大数据时代的Intel之Hadoop2011年6月乊前, Facebook平台每天分享资 料: 40亿 智慧城市数据 中国某一线城市: 200PB/季度 中国一线城市健康档案数 据: 5.5 million 传统的数据处理技术 大数据时代的数据 速度 数据量 多样化 传统数据 大数据 GB -> TB TB -> PB以上 数据量稳定,增长不快 持续实时产生数据, 年增长率超过60% 推迚终端设备和传感器的智能化,构建亏联、可管理的和 安全的分布式架构 软硬结合 Intel Hadoop商业发行版 优化的大数据处理软件栈 稳定的企业级hadoop发行版 利用硬件新技术迚行优化 HBase改迚和创新,为Hadoop提供实时数据处理能力 针对行业的功能增强,应对丌同行业的大数据挑戓 Hive 0.9.0 交互式数据仓库 Sqoop 1.4.1 关系数据ETL工具 尽量避免:比方说增加compaction thread数,防止阻塞写入 • 过多的split • 预分配region 大对象的高效存储(IDH2.3) 在交通、金融等领域,要求存储大量的图片 • 将图片存入HBase,引起大量的compaction • 将图片存入HDFS,管理使用麻烦 IDH引入了表外存储以解决大对象的高效存储问题 • 类似Oracle的BLOB存储 • 对用户透明 • 2X以上的写入性能,还有迚一步提升的空间0 码力 | 36 页 | 2.50 MB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
1 © 2015 The MathWorks, Inc. MATLAB与Spark/Hadoop相集成:实现大 数据的处理和价值挖 马文辉 2 内容 ▪ 大数据及其带来的挑战 ▪ MATLAB大数据处理 ➢ tall数组 ➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 数据种类 ,数据种类繁多 结构化数据,半结构化数据,非结构化数据 ▪ Value - 数据价值,数据价值密度低 价值密度的高低与数据总量的大小成反比 ▪ Velocity - 数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 – 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; 现有处理或计算方法下的结果质量受到影响 – 被迫只能处理一部分数据(数据子集); – 采用新的工具或重写算法会对现有生产力产生影响; ▪ 数据处理与分析所需时间增长 – 数据规模增大、数据复杂度增加,增加处理难度和所需时间; 5 MATLAB的大数据处理 ▪ 编程 ▪ Streaming ▪ Block Processing ▪ Parallel-for loops ▪ GPU Arrays0 码力 | 17 页 | 1.64 MB | 1 年前3
大数据集成与Hadoop - IBM行软件平台,有些企业采用此做法已有近20年。 久而久之,这些供应商陆续集中关注4个常见的软件架构特征, 以便为实现海量数据可扩展性提供支持,如图2所示。 IBM软件 5 图2. 海量数据可扩展性的4大特征。 大部分商业数据集成软件平台在设计时从未考虑过支持海量数 据可扩展性,这意味着在设计之初,并未考虑利用非共享大规模 并行架构。它们依靠共享的内存多线程,而非软件数据流。 此外,有些供应商 分区数据执行相同的应用 程序逻辑。 形成设计隔离的环境 设计一个数据处理作业, 并且无需重新设计和重新 调整作业,即可在任何硬 件配置中使用它。 使用它。这些功能对于通过提升效率来降低成本至关重要。没 有它们,该平台将无法处理大量的大数据。 InfoSphere Information Server数据集成产品组合 支持4大海量数据可扩展性架构特征。请在Forrester报 告“Measuring 可能需要复杂的编程工作 • MapReduce通常比并行数 据库或可扩展ETL工具速度 更慢 • 风险:Hadoop目前仍然是 一项新兴技术 IBM软件 7 以下是优化大数据集成工作负载时需要遵循的三大重要指导 原则: 1. 将大数据集成处理推向数据,而不是将数据推向处理:指定 可在RDBMS、Hadoop和ETL网格中执行的适当流程。 2. 避免手动编码:手动编码费用昂贵,而且无法有效适应快速0 码力 | 16 页 | 1.23 MB | 1 年前3
Hadoop 概述例如,让我们考虑类似 Google、Bing 或者 Twitter 这样的大型 数据存储。所有这些数据存储都会随着诸如查询和庞大用户基数等 活动事件而呈现出指数增长。Hadoop 的组件可以帮助你处理这些大 型数据存储。 类似 Google 这样的商业公司可使用 Hadoop 来操作、管理其数 据存储并从中产生出有意义的结果。通常用于商业分析的传统工具 并不旨在处理或分析超大规模数据集,但 Hadoop 4 Machine,VM)或笔记本电脑上完成初始配置,而且可以升级到服务 器部署。它具有高度的容错性,并且被设计为能够部署在低成本的 硬件之上。它提供对应用程序数据的高吞吐量访问,适合于面向大 型数据集的应用程序。 在任何环境中,硬件故障都是不可避免的。有了 HDFS,你的 数据可以跨越数千台服务器,而每台服务器上均包含一部分基础数 据。这就是容错功能发挥作用的地方。现实情况是,这么多服务器 的古老时钟。在移动到下一个之前,每一个齿轮执行一项特定任务。 它展现了数据被切分为更小尺寸以供处理的过渡状态。 主节点 客户端 HDFS 分布式数据存储 YARN 分布式数据处理 从属 NAMENODE 活动 NAMENODE 备用 NAMENODE 调度器 共享编辑日志 或者 JOURNAL NODE 从节点 容器 容器 容器0 码力 | 17 页 | 583.90 KB | 1 年前3
Hadoop 迁移到阿里云MaxCompute 技术方案Hbase 实现低延迟的在线服务等 分析与报表:对数据进行分析和展现以获取洞察。如 BI 工具、jupyter 等。 数据作业编排:将多个数据处理动作(数据移动、处理转换等)编排成为工作流并周期性地 执行以实现数据处理工作的自动化。如 Apache Oozie、Sqoop 等。 2.1.2 开源大数据组件架构 Alibaba Cloud MaxCompute 解决方案0 码力 | 59 页 | 4.33 MB | 1 年前3
银河麒麟服务器操作系统V4 Hadoop 软件适配手册块,管理 block 块信息,同时周期性的将其所有的 block 块信息发 送给 NameNode。 1.5 MapReduce 介绍 MapReduce 是一种计算模型,该模型可以将大型数据处理任务分解成很多单 个的、可以在服务器集群中并行执行的任务,而这些任务的计算结果可以合并在 一起来计算最终的结果。简而言之,Hadoop Mapreduce 是一个易于编程并且能在 大型集群(0 码力 | 8 页 | 313.35 KB | 1 年前3
這些年,我們一起追的HadoopHDFS 只能有一個 Namespace,沒辦法分開管控 /sales、/accounting、... 只能執行 MapReduce Job ... 弱弱的問一下:台灣有多少企業 Cluster 有這麼大?Task 有這麼 多? 11 / 74 我們對 Hadoop 的期許: Batch Job Interactive Query Real-Time Processing Graph Processing MapReduce 演化成 Data Processing Platform 之後,改善 Hive 的效能 滿足 Interactive Query 與 PB-Scale Processing 的需求 三大目標: Speed:比 Hive 10 快 100 倍 Scale:撐的下 TB 到 PB 等級的資料 SQL Compatibility:最廣泛的 SQL 語法支援 13 個月內一共有來自 44 球賽的期間合作,透過 Dataflow 讀取數百萬則 Twitter 貼文,做球迷情感分析 號稱下一代的 Dataflow 目前也是寫 Java iThome Google I/O 2014 快報:雲端大資料分析服務 Dataflow 現身 62 / 74 Data 重要議題: SQL on Hadoop NoSQL and Hadoop 資料不落地 資料不出防火牆 ... 所以: 從 Hue0 码力 | 74 页 | 45.76 MB | 1 年前3
尚硅谷大数据技术之Hadoop(入门)Hadoop 项目 中,Hadoop就此正式诞生,标志着大数据时代来临。 9)名字来源于Doug Cutting儿子的玩具大象 Hadoop的logo 1.3 Hadoop 三大发行版本(了解) Hadoop 三大发行版本:Apache、Cloudera、Hortonworks。 Apache 版本最原始(最基础)的版本,对于入门学习最好。2006 Cloudera 内部集成了很多大数据框架,对应产品0 码力 | 35 页 | 1.70 MB | 1 年前3
Hadoop 3.0以及未来Spark、Kafka、Cassandra等开源大数据顷目建立ebay的广告和数 据平台。 • 加入ebay前,在intel工作6年,大数据架构师,负责领导大数据的 开源贡献、基于Intel平台的开源顷目优化以及一些基于Spark的大 规模机器/深度学习顷目。 • 超过9年的互联网、云计算、大数据的工作经验。 概要 • Hadoop的历叱 • Hadoop 3介绍 Common HDFS YARN MapReduce0 码力 | 33 页 | 841.56 KB | 1 年前3
尚硅谷大数据技术之Hadoop(生产调优手册)可能是卡住了,也许永远会卡住,为了防止因为用户程序永远Block住 不退出,则强制设置了一个该超时时间(单位毫秒),默认是600000 (10分钟)。如果你的程序对每条输入数据的处理时间过长,建议将 该参数调大。 8)mapreduce.job.reduce.slowstart.completedmaps当MapTask完成的比 例达到该值后才会为ReduceTask申请资源。默认是0.05。 10)如果可以不用Reduce,尽可能不用0 码力 | 41 页 | 2.32 MB | 1 年前3
共 10 条
- 1













