积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)Hadoop(8)

语言

全部中文(简体)(7)西班牙语(1)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 8 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 大数据集成与Hadoop - IBM

    独立数据分区并行运行单一数据集成作业,也无法实现设计一 次作业,无需重新设计和重新调整作业即可在任何硬件配置中 非共享架构 从头开始创建软件,以便 利用非共享的大规模并行 架构,方法是将数据集分 散到多个计算节点,执行 单一应用程序(对每个数 据分区执行相同的应用程 序逻辑)。 使用软件数据流来实施 项目 软件数据流通过简化在一 个或多个节点实施和执行 数据管道和数据分区的过 程,从而充分利用非共享 程,从而充分利用非共享 架构。软件数据流还可以 将构建和优化多位用户运 行的并行应用程序的复杂 问题隐藏起来。 利用数据分区实现线性 数据可扩展性 大数据集分散在多个独立 节点间,单个作业对所有 分区数据执行相同的应用 程序逻辑。 形成设计隔离的环境 设计一个数据处理作业, 并且无需重新设计和重新 调整作业,即可在任何硬 件配置中使用它。 使用它。这些功能对于通过提升效率来降低成本至关重要。没 片”通常为64MB或128MB。通常情况下,除非应用程序加载 数据来管理相关任务,否则不会对HDFS文件进行分区或排 序。即使应用程序可以对生成的数据切片进行分区和排序, 也无法保证数据切片在HDFS系统中的位置正确。这意味着, 无法在该环境中有效管理数据搭配工作。数据搭配(Data collocation)至关重要,因为它可确保将联接(join)键相同的 数据整合到相同的节点,因此该流程不仅性能高,而且很准确。 虽然
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    Map1方法 分区1 分区2 写入数据 第一次溢出 排序 第二次溢出 Combiner Combiner 归并排序 归并排序 合并 Combiner为可选流程 压缩 写磁盘 分区1 分区2 分区1 排序 分区2 排序 排序 分区1 排序 分区2 排序 分区1 合并 分区2 合并 分区1 合并 分区2 合并 分区1 归并 分区2 归并 分区1 压缩 压缩 分区2 压缩 分区1 输出 分区2 输出 分区1 合并 分区2 合并 combiner 分区 分区 kvindex bufindex kvmeta Spill.out spill.index spill.index Spill.out 默认100M 80%,后反向 环形缓冲区 2)减少溢写的次数 mapreduce.task.io.sort.mb 9)异常重试 mapreduce.map.maxattempts每个Map Task最大重试次数,一旦重试 次数超过该值,则认为Map Task运行失败,默认值:4。根据机器 性能适当提高。 1)自定义分区,减少数据倾斜; 定义类,继承Partitioner接口,重写getPartition方法 4)在不影响业务结果的前提条件下可以提前采用Combiner job.setCombinerClass(xxxReducer
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
  • pdf文档 Spark 简介以及与 Hadoop 的对比

    弹性分布数据集(RDD) RDD 是 Spark 的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式 来操作分布式数据集的抽象实现。RDD 是 Spark 最核心的东西,它表示已被分区,不可变的 并能够被并行操作的数据集合,不同的数据集格式对应不同的 RDD 实现。RDD 必须是可序 列化的。RDD 可以 cache 到内存中,每次对 RDD 数据集的操作之后的结果,都可以存放到 Lineage 记录的是粗颗粒度的特定数据转换(Transformation) 操作(filter, map, join etc.)行为。当这个 RDD 的部分分区数据丢失时,它可以通过 Lineage 获取足够的信息来重新运算和恢复丢失的数据分区。这种粗颗粒的数据模型,限制了 Spark 的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。 RDD 在 Lineage 依赖方面分为两种 RDD 的每一个分区最多被一个子 RDD 的分区所用,表现为一个父 RDD 的分区对应于一个子 RDD 的分区或多个父 RDD 的分 区对应于一个子 RDD 的分区,也就是说一个父 RDD 的一个分区不可能对应一个子 RDD 的 多个分区。Wide Dependencies 是指子 RDD 的分区依赖于父 RDD 的多个分区或所有分区, 也就是说存在一个父 RDD 的一个分区对应一个子 RDD
    0 码力 | 3 页 | 172.14 KB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    ...................................................... 49 7.1.7 运行 odps_ddl_runner.py 生成 odps 表和分区 .............................................................. 50 7.1.8 运行 hive_udtf_sql_runner compute 映射 ............................................................................ 53 7.2.3 单表/单分区迁移 ................................................................................................ 12 续将提供兼容 ORC 的 Ali-ORC 存储格式 支持外表,将存储在 OSS 对象存储、OTS 表格存储的数 据映射为二维表 支持 Partition、Bucket 的分区、分桶存储 更底层不是 HDFS,是阿里自研的盘古文件系统,但可借 助 HDFS 理解对应的表之下文件的体系结构、任务并发 机制 使用时,存储与计算解耦,不需要仅仅为了存储扩大不必 要的计算资源
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 Hadoop 概述

    Oracle SQL 在 Hadoop 中就地查询数据。Oracle SQL Connector for HDFS 能够查询 或者加载数据到文本文件或者基于文本文件的 Hive 表中。分区也可 以在从 Hive 分区表中查询或加载时被删减。 另一种 Oracle 解决方案 Oracle Loader for Hadoop 是一种高性能 且高效率的连接器,用于从 Hadoop 中加载数据到 Oracle 发起数据传送时,Oracle Loader for Hadoop 将数据推送到 数据库中。如图 1-9 所示。Oracle Loader for Hadoop 利用 Hadoop 计 算资源进行排序、分区并在加载之前将数据转换成适配于 Oracle 的 数据类型。当加载数据时,在 Hadoop 上进行的数据预处理降低了 数据库 CPU 的使用率。这样就减少了对数据库应用程序的影响,减 第 1 章 更多… 文本 压缩文件 序列文件 并行负载,针对 Hadoop 做优化 自动负载均衡 在 Hadoop 上转换成 Oracle 格式 ——节省数据库的 CPU 加载特定的 Hive 分区 Kerberos 认证 直接加载到 In-Memory 表 图 1-9 Hadoop 大数据解决方案 16 Oracle R Connector for Hadoop
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    达到>1万条记录/秒(每记录200字节) 英特尔Hadoop功能增强 - 跨数据中心大表 虚拟大表 分中心 A 分中心 B 分中心 C 特点与优势 全局虚拟大表,访问方便 大表数据分区存放在物理分中心 接入仸何分中心可访问全局数据 高可用性 适合本地高速写入 分布式聚合计算,避免大数据传输 英特尔Hadoop发行版 – 主要特色 经实际验证的企业级 Hadoop 发行版
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    操作会将集合中的元素从一种形式转化成另一种形式,在这种情况下, 输入的键值对会被转换成零到多个键值对输出。其中输入和输出的键必须完全不 同,而输入和输出的值则可能完全不同。  reduce: 某个键的所有键值对都会被分发到同一个 reduce 操作中。确切的说,这个键 和这个键所对应的所有值都会被传递给同一个 Reducer。reduce 过程的目的是将值的集合转换成一个值(例如求和或者求平均),或者转换成另
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
  • pdf文档 Hadoop开发指南

    在 在UHost上安装 上安装Hadoop客户端 客户端 出于安全性考虑,⼀般建议⽤⼾在⾮UHadoop集群机器上安装客⼾端进⾏任务提交与相关操作 1.1 控制台安装 控制台安装 可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存量已⾃⾏安装⽤⼾,可根据选择按照以下⽅式⾃⾏安装。 1.2.1 利⽤安装脚本部署 利⽤安装脚本部署 在任⼀master节点下的都有
    0 码力 | 12 页 | 135.94 KB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
大数集成HadoopIBM硅谷技术生产调优手册Spark简介以及对比迁移阿里MaxCompute方案概述时代Intel银河麒麟服务务器服务器操作系统操作系统V4软件适配开发指南
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩