积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(355)VirtualBox(113)OpenShift(75)Apache Kyuubi(44)Pandas(32)机器学习(20)Kubernetes(17)Istio(17)rancher(9)边缘计算(6)

语言

全部英语(254)中文(简体)(95)英语(4)中文(简体)(1)

格式

全部PDF文档 PDF(331)其他文档 其他(24)
 
本次搜索耗时 0.043 秒,为您找到相关结果约 355 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • OpenShift
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • Kubernetes
  • Istio
  • rancher
  • 边缘计算
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    深度学习-Transformer 黄海广 副教授 2 03 Transformer的训练 本章目录 01 Transformer介绍 02 Transformer的工作流程 04 BERT 3 1.Transformer介绍 01 Transformer介绍 03 Transformer的训练 02 Transformer的工作流程 4 1.Transformer介绍 为什么需要用transformer 其实在之前我们使用的是RNN(或者是其的单向或者双向变种LSTM/GRU等) 来 作为编解码器。RNN模块每次只能够吃进一个输入token和前一次的隐藏状态,然 后得到输出。它的时序结构使得这个模型能够得到长距离的依赖关系,但是这也 使得它不能够并行计算,模型效率十分低。 在没有transformer的时候,我们 5 1.Transformer介绍 Seq2Seq任务 Seq2Seq 任务指的是输入和输出都是 序列的任务,输出的长度不确定时采 用的模型,这种情况一般是在机器翻 译的任务中出现,将一句中文翻译成 英文,那么这句英文的长度有可能会 比中文短,也有可能会比中文长,所 以输出的长度就不确定了。 上图,输入的中文长度为4,输出的英文长度为2 6 1.Transformer介绍 Encoder-Decoder模型
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-14深度学习-Vision Transformer (ViT)

    1 2023年06月 深度学习-Vision Transformer (ViT) 黄海广 副教授 2 03 模型训练策略 本章目录 01 背景知识 02 模型介绍 04 模型的缺点与改进 05 模型的代码实现 3 1.背景知识 03 模型训练策略 01 背景知识 02 模型介绍 04 模型的缺点与改进 05 all you need的文章,开创性地提出了 在序列转录领域,完全抛弃 CNN和RNN,只依赖Attention-注 意力结构的简单的网络架构, 名为Transformer;论文实现的 任务是机器翻译。 Transformer结构 Multi-Head Attention Add & Norm Input Embedding Output Embedding Feed Inputs Outputs (shifted right) Positional Encoding Positional Encoding 1.背景知识 6 为什么需要用transformer Transformer原本是用来做 NLP的工作的,所以ViT的 首要任务是将图转换成词 的结构,这里采取的方法 是如上图左下角所示,将 图片分割成小块,每个小 块就相当于句子里的一个 词。这里把每个小块称作
    0 码力 | 34 页 | 2.78 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    Framework containers are no longer tested on Pascal GPU architectures. ‣ Transformer Engine is a library for accelerating Transformer models on NVIDIA GPUs. It includes support for 8-bit floating point (FP8) inference performance with lower memory utilization. Transformer Engine also includes a collection of highly optimized modules for popular Transformer architectures and an automatic mixed precision-like TransformerXL model: This transformer-based language model has a segment-level recurrence and a novel relative positional encoding. The enhancements that were introduced in Transformer-XL help capture better
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    Normalization: bn, gn, ln?  激活函数: relu, leaky_relu, swish ?  Backbone: resnet, hrnet, mobilenet, transformer?  多任务模型: share-bottom, mmoe, ple?  特征选择/生成: Age, sex, comment, click… 解决方案: 超参搜索 效果提升 模型理解 Blade  推荐模型优化: 千亿特征 3. 工程优化 RingAllReduce + 层级级联 EasyVision 多机多卡性能对比 工程优化: 数据并行  M6模型  Transformer模型: RapidFormer  人脸分类模型: 超大softmax  3D卷积模型 M6模型 RapidFormer性能 工程优化: 模型并行(Whale)  FP16 / Op融合(Fusion Stitch)  MILR: Blade Disc 工程优化: Blade模型推理 Dynamic Shape Compiler for Machine Learning Workloads EmbeddingVariable [No Hash Conflict] 特征准入/淘汰 Adaptive Embedding 训练: 推理: Ring All-reduc同步训练
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    a similar effect in the world of Natural Language Processing (NLP) (see Figure 1-2), where the Transformer architecture significantly beat previous benchmarks such as the General Language Understanding models like BERT4 and GPT5 models have demonstrated additional improvements on NLP-related tasks. BERT spawned several related model architectures optimizing its various aspects. GPT-3 has captured the attention over the Transformer Encoder architecture that is the leading architecture being used for complex NLP tasks such as translation. The NAS generated architecture, which is named Evolved Transformer8, achieves
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    meaningfully represent these inputs using a small number of numerical features, will help us solve tasks related to these inputs. Ideally this representation is such that similar inputs have similar representations quite a journey, let's pause and ponder over what we learnt. Some more thoughts and optimizations related to Embeddings So far we learnt about embeddings, how pre-trained embeddings are useful, and gave mechanism, which forms the backbone of the state of the art NLP model architectures such as the Transformer, which is now showing great promise in computer vision applications as well! Learn Long-Term Dependencies
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Cloud Native Contrail Networking Installation and Life Cycle ManagementGuide for Rancher RKE2

    Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the year 2038. However, the NTP application is known to have some difficulty automates the creation and management of virtualized networks to connect, isolate, and secure cloud workloads and services seamlessly across private and public clouds. Cloud-Native Contrail Networking (CN2) end-to-end virtual networking and security for cloud-native containerized and virtual machine (VM) workloads, across multi-cluster compute and storage environments, all from a central point of control. It
    0 码力 | 72 页 | 1.01 MB | 1 年前
    3
  • pdf文档 Apache Kyuubi 1.7.3 Documentation

    Therefore, they can upgrade components on the server side with zero maintenance downtime, optimize workloads with a clear view of what end users are doing, ensure authentication, authorization, and auditing pure SQL for both data processing, e.g. ETL, and online analytics processing(OLAP), e.g. BI. All workloads can be done on one platform, using one copy of data, with one SQL interface. ADMIN GUIDE 1 Kyuubi enables simplified, secure access to any cluster resource through an entry point to deploy different workloads for end(remote) users. Behind this single entry, admin- istrators have a single point for configuration
    0 码力 | 211 页 | 3.79 MB | 1 年前
    3
  • pdf文档 Apache Kyuubi 1.7.3-rc0 Documentation

    Therefore, they can upgrade components on the server side with zero maintenance downtime, optimize workloads with a clear view of what end users are doing, ensure authentication, authorization, and auditing pure SQL for both data processing, e.g. ETL, and online analytics processing(OLAP), e.g. BI. All workloads can be done on one platform, using one copy of data, with one SQL interface. ADMIN GUIDE 1 Kyuubi enables simplified, secure access to any cluster resource through an entry point to deploy different workloads for end(remote) users. Behind this single entry, admin- istrators have a single point for configuration
    0 码力 | 211 页 | 3.79 MB | 1 年前
    3
  • pdf文档 Apache Kyuubi 1.7.2 Documentation

    Therefore, they can upgrade components on the server side with zero maintenance downtime, optimize workloads with a clear view of what end users are doing, ensure authentication, authorization, and auditing pure SQL for both data processing, e.g. ETL, and online analytics processing(OLAP), e.g. BI. All workloads can be done on one platform, using one copy of data, with one SQL interface. ADMIN GUIDE 1 Kyuubi enables simplified, secure access to any cluster resource through an entry point to deploy different workloads for end(remote) users. Behind this single entry, admin- istrators have a single point for configuration
    0 码力 | 211 页 | 3.79 MB | 1 年前
    3
共 355 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 36
前往
页
相关搜索词
机器学习课程温州大学13深度Transformer14VisionViTPyTorchReleaseNotes阿里云上建模实践程孟力EfficientDeepLearningBookEDLChapterIntroductionArchitecturesCloudNativeContrailNetworkingInstallationandLifeCycleManagementGuideforRancherRKE2ApacheKyuubi1.7Documentationrc0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩