积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(219)VirtualBox(112)OpenShift(35)Pandas(32)Apache Kyuubi(14)Kubernetes(6)机器学习(6)Apache Flink(4)边缘计算(4)rancher(3)

语言

全部英语(177)中文(简体)(41)英语(1)

格式

全部PDF文档 PDF(209)其他文档 其他(9)PPT文档 PPT(1)
 
本次搜索耗时 0.478 秒,为您找到相关结果约 219 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • OpenShift
  • Pandas
  • Apache Kyuubi
  • Kubernetes
  • 机器学习
  • Apache Flink
  • 边缘计算
  • rancher
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Tutorial

    FloatTensor *Assume 't' is a tensor Autograd • Autograd • Automatic Differentiation Package • Don’t need to worry about partial differentiation, chain rule etc.. • backward() does that • loss.backward()
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Python. ● Two main features: ○ N-dimensional Tensor computation (like NumPy) on GPUs ○ Automatic differentiation for training deep neural networks Training Neural Networks Training Define Neural Network
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    Functionality can be easily extended with common Python libraries such as NumPy, SciPy, and Cython. Automatic differentiation is done with a tape-based system at both a functional and neural network layer level. This includes a collection of highly optimized modules for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your PyTorch code. ‣ A preview of Torch-TensorRT commit 9130ab38 from July 31, 2019 as well as a cherry- picked TensorRT 5.1.5 Automatic Mixed Precision (AMP) Automatic Mixed Precision (AMP) for PyTorch is available in this container through the native
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.3

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746 16.9.1 Automatic exclusion of “nuisance” columns . . . . . . . . . . . . . . . . . . . . . . . . . . 746 16.9.2 Suppressing Tick Resolution Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 962 22.5.5 Automatic Date Tick Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965 22.5.6 mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can
    0 码力 | 2045 页 | 9.18 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.2

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744 16.9.1 Automatic exclusion of “nuisance” columns . . . . . . . . . . . . . . . . . . . . . . . . . . 744 16.9.2 Suppressing Tick Resolution Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 957 22.5.5 Automatic Date Tick Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960 22.5.6 mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can
    0 码力 | 1907 页 | 7.83 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.21.1

    Consistency of Range Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.2.2.13 No Automatic Matplotlib Converters . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.2.2.14 Other API Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776 16.9.1 Automatic exclusion of “nuisance” columns . . . . . . . . . . . . . . . . . . . . . . . . . . 776 16.9.2 Suppressing Tick Resolution Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 995 22.5.7 Automatic Date Tick Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998 22.5.8
    0 码力 | 2207 页 | 8.59 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    键步骤。虽然求导的计算很简单,只需要一些基 本的微积分。但对于复杂的模型,手工进行更新是一件很痛苦的事情(而且经常容易出错)。 深度学习框架通过自动计算导数,即自动微分(automatic differentiation)来加快求导。实际中,根据设计 好的模型,系统会构建一个计算图(computational graph),来跟踪计算是哪些数据通过哪些操作组合起来 产生输出。自动微分使系统 [Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., & Zhu, W.‐J. (2002). Bleu: a method for automatic evaluation of machine translation. Proceedings of the 40th annual meeting of the Association for
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can Accessing the array can be useful when you need to do some operation without the index (to disable automatic alignment, for example). Series.array will always be an ExtensionArray. Briefly, an ExtensionArray it begins with 'timestamp' • it is 'modified' • it is 'date' Warning: When reading JSON data, automatic coercing into dtypes has some quirks: • an index can be reconstructed in a different order from
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can Accessing the array can be useful when you need to do some operation without the index (to disable automatic alignment, for example). Series.array will always be an ExtensionArray. Briefly, an ExtensionArray it begins with 'timestamp' • it is 'modified' • it is 'date' Warning: When reading JSON data, automatic coercing into dtypes has some quirks: • an index can be reconstructed in a different order from
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.1

    mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can Accessing the array can be useful when you need to do some operation without the index (to disable automatic alignment, for example). Series.array will always be an ExtensionArray. Briefly, an ExtensionArray it begins with 'timestamp' • it is 'modified' • it is 'date' Warning: When reading JSON data, automatic coercing into dtypes has some quirks: • an index can be reconstructed in a different order from
    0 码力 | 2833 页 | 9.65 MB | 1 年前
    3
共 219 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 22
前往
页
相关搜索词
PyTorchTutorialMachineLearningPytorchReleaseNotespandaspowerfulPythondataanalysistoolkit0.200.21动手深度学习v21.00.25
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩