云计算白皮书2023年7月 云计算白皮书 (2023 年) 版权声明 本白皮书版权属于中国信息通信研究院,并受法律保 护。转载、摘编或利用其它方式使用本白皮书文字或者观 点的,应注明“来源:中国信息通信研究院”。违反上述声 明者,本院将追究其相关法律责任。 前 言 党的二十大报告提出,要构建新一代信息技术等一批新的增长 引擎,打造具有国际竞争力的数字产业集群。云计算是信息技术发 展和服 势,是信息时代国际竞争的制高点和经济发展新动能的助燃剂。云 计算引发了软件开发部署模式的创新,成为承载各类应用的关键基 础设施,并为大数据、物联网、人工智能等新兴领域的发展提供基 础支撑。加快推动云计算创新发展,顺应新一轮科技革命和产业变 革趋势,是推进中国式现代化进程的关键。 过去一年,全球和我国云计算产业保持快速发展,并呈现出以 下特点: 一是云计算战略价值在全球范围内持续提升。美国继“云优先” Smart)之后,又出台多个战略文件, 将云计算应用至相关领域,并明确提出通过云战略获取全球优势, 以确保其在经济、军事、科技等领域的领先地位。欧洲、亚洲等主 要国家纷纷发布国家战略或计划,推动云计算在各行业的应用布局, 深度挖掘云计算产业价值。我国政策指引云计算应用创新,持续推 动云计算与实体经济融合走深。 二是全球云计算市场稳定增长,我国保持快速发展。2022 年, 全球云计算市场规模为 4,910 亿美元,增速0 码力 | 47 页 | 1.22 MB | 1 年前3
【05 计算平台 蓉荣】Flink 批处理及其应⽤What is Apache Flink * Apache Flink 是⼀一个分布式⼤大数据处理理引擎 * 可对有限数据流和⽆无限数据流进⾏行行有状态计算 * 可部署在各种集群环境 * 对各种⼤大⼩小的数据规模进⾏行行快速计算 为什什么Flink能做批处理理 Table Stream Bounded Data Unbounded Data SQL Runtime Lake vs. Data Warehouse Flink Batch应⽤用 - 数据湖 Flink Batch应⽤用 - 数据湖 Blink SQL+UDF Queue 存储类 存储 计算 存储 Queue 存储类 • Kafka • Datahub • SLS • MQ • OSS • OTS • HBase • RDS • ADS • HDFS • OSS Batch应⽤用 - 数仓 简化架构 ⽅方便便运维 Flink社区规划 Flink AliFlink 社区 ⽣生态 实时计算 StreamC ompute 1 3 4 2 Flink 实时计算 商业化版本 阿⾥里里云实时计算产品⽅方向 存储计算分离 架构 ⾼高性能 全托管架构 全功能⼤大数据 处理理能⼒力力 Thanks0 码力 | 12 页 | 1.44 MB | 1 年前3
函数计算在双11小程序场景中的应用阿里云函数计算技术专家 函数计算在双11小程序场景中的应用 关注“阿里巴巴云原生”公众号 回复 1124 获取 PPT自我介绍 •吴天龙(花名: 木吴) •阿里云函数计算技术专家 •2013 年加入阿里云,参与分布式数据库, 对象存储等产品的开发。现任阿里云函数 计算架构师,聚焦于 Serverless 产品功 能和大规模资源伸缩调度、性能优化等系 统核心能力的研发。❖ 函数计算介绍 ❖ ❖ 双11小程序场景介绍 ❖ 技术挑战 ❖ Demo 目录函数计算-介绍 • 通用Serverless计算平 台 • 与云端事件源无缝集成 • 弹性伸缩,按量付费函数计算-介绍双11小程序场景介绍小程序场景的挑战 n 安全隔离 n 开发效率 n 大量的小程序是不活跃的 n 活动高峰期流量激增函数计算-冷启动优化 Download & Extract Code User Code 10ms~60000ms 预留实例 0ms 0ms函数计算-弹性伸缩 C1 C1 C2 C1 C2 时间 t1 t2函数计算-预留实例 • 预留实例:性能好 • 按量实例:按需使用函数计算-预留实例 预留实例 按量实例 效果 0 0 禁止调用 10 0 只使用预留实例,固定费用 0 10 只使用按量实例,按需付费 10 5 混合模式,兼顾性能和成本函数计算 DemoThank you ! 关注“阿里巴巴云原生”公众号0 码力 | 13 页 | 6.95 MB | 6 月前3
深度解析CNCF社区⾸个基于Kubernetes的边缘计算平台KubeEdge深度解析CNCF社区⾸首个基于Kubernetes的边缘计算平台KubeEdge� 向新勇� https://github.com/edisonxiang� Introduce� ➔ 华为开源社区⼯工程师� ➔ KubeEdge社区Member� ➔ Kubernetes社区Member� ➔ OpenSDS社区Memeber� ➔ OpenStack社区数据保护项⽬目联合发起⼈人� ➔ 边缘计算 & 应⽤用场景 & ⾯面临的挑战� ➔ Why KubeEdge & 基础架构 & 设备管理理 & 实战� ➔ 后续规划 & 社区贡献 & 技术交流� 边缘计算� 云计算是集中化的,离终端设备(如摄像头、传感器器等)和⽤用户较远,对于实时性要求⾼高的计算需求,把计算放在云上会引起较⻓长的⽹网络延 时、⽹网络拥塞、服务质量量下降等问题。⽽而终端设备通常计算能⼒力力不不 ⾜足,⽆无法与云端相⽐比。在此情况下,边缘计算应运⽽而⽣生,将云端计算能⼒力力 延伸到靠近终端设备的边缘节点,就近提供服务。边缘计算不不是云计算的替代品,边缘计算减轻了了云计算架构的计算负担,是其补充和延伸。 云边协同才能够最⼤大程度的发挥作⽤用。连上云的边才有强⼤大的能⼒力力和灵活性。连上边的云才有数据引流上云和应⽤用服务落地点。� 边缘计算——快速发展的四⼤大因素� Gartner公布0 码力 | 20 页 | 2.08 MB | 1 年前3
构建基于富媒体大数据的弹性深度学习计算平台构建基于富媒体大数据的弹性深度学 习计算平台 SPEAKER / 土土@七牛 AtLab Mobile —> 富媒体时代 数据存储 数据加速 数据处理 直播 点播 Connect 每天超过10亿图像上传 超过万亿小时的音视频存储 What are they? 内容审核团队 运营分析团队 AI? Content 分类 检测 分割 跟踪 描述 搜索 分析 …0 码力 | 21 页 | 1.71 MB | 1 年前3
27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-1 远端控制 云端分析系统 设备端 自动化解决用户使用体验问题,计算量属于窄带范畴, 所以计算算力重点在于云端,云端计算体系架构成熟, 成本较低,在业务上本地的设备根据模式信号反馈一些 动作,比如下雨关窗帘,是自动化范畴,上传云端的数 据都是属性数据,比如谁什么时候干了什么,后续云端 根据个人喜好数据为用户提供比如按照个人喜好调节温 设备端 (现场)边缘计算BOX 业务场景复杂,对算力、通信要求很高,计算放置于 云端时效性差,另外无法现场就对业务进行处理,比 如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 大范围为客户赋能,IoT和边缘计算一定走向融合。 定位为基于物模型的计算 定位为基于业务的计算 高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge 高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-2 • 为了更好的为客户业 务场景赋能,比如路 口的交通事故识别和 预警等等需要低时延 高算力的场景,需要 实现云边一体纳管, 简化运维,降低成本, 客户专注于业务领域。 • 无论是AIoT还是边缘 计算,核心要素是计 算,计算平台的训练 平台位于云端,而推 理计算位于BOX端,并 且能够适应各类算法 和硬件的要求,形成 一个通用计算平台, 更普遍的为客户场景0 码力 | 20 页 | 5.17 MB | 6 月前3
机器学习课程-温州大学-05机器学习-机器学习实践(假设百万条数据) 1.数据集划分 数据集 训练集 验证集 测试集 5 交叉验证 1. 使用训练集训练出k个模型 2. 用k个模型分别对交叉验证集计算得 出交叉验证误差(代价函数的值) 3. 选取代价函数值最小的模型 4. 用步骤3中选出的模型对测试集计算得出 推广误差(代价函数的值) 6 数据不平衡是指数据集中各类样本数量不均衡的情况. 常用不平衡处理方法有采样和代价敏感学习 采样欠采样、过采样和综合采样的方法 欠拟合的处理 1.添加新特征 当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合。通 过挖掘组合特征等新的特征,往往能够取得更好的效果。 2.增加模型复杂度 简单模型的学习能力较差,通过增加模型的复杂度可以使模型拥有更强的拟合能 力。例如,在线性模型中添加高次项,在神经网络模型中增加网络层数或神经元 个数等。 3.减小正则化系数 正则化是用来防止过拟合的,但当模型出现欠拟合现象时,则需要有针对性地减 stopping的优点是,只运行 一次梯度下降,你可以找出?的较小 值,中间值和较大值,而无需尝试?2 正则化超级参数?的很多值。 27 正则化 大部分的计算机视觉任务使用很多的数据 ,所以数据增强是经常使用的一种技巧来 提高计算机视觉系统的表现。计算机视觉 任务的数据增强通常以下方法实现: (1) 随意翻转、镜像。 (2) 随意裁剪。 (3) 扭曲变形图片。 (4) 颜色转换,然后给R、G和B三个通道上0 码力 | 33 页 | 2.14 MB | 1 年前3
机器学习课程-温州大学-特征工程99.0] 4 13 2. 特征构建 • 聚合特征构造主要通过对多个特征的分组聚合实现,这些特征通常来 自同一张表或者多张表的联立。 • 聚合特征构造使用一对多的关联来对观测值分组,然后计算统计量。 • 常见的分组统计量有中位数、算术平均数、众数、最小值、最大值、 标准差、方差和频数等。 聚合特征构造 14 2. 特征构建 相对于聚合特征构造依赖于多个特征的分组统计,通常依赖于对于特征本 常见的转换方法有单调转换(幂变换、log变换、绝对值等)、线性组合、 多项式组合、比例、排名编码和异或值等。 转换特征构造 15 2. 特征构建 • 基于单价和销售量计算销售额. • 基于原价和售价计算利润. • 基于不同月份的销售额计算环比或同比销售额增长/下降率. • …… 转换特征构造 此外,由于业务的需求,一些指标特征也需要基于业务理解 进行特征构造。 16 3. 特征提取 01 中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 2. HOG特征 方向梯度直方图(HOG)特征是 2005 年针对行人检测问题提出的直方图特 征,它通过计算和统计图像局部区域的梯度方向直方图来实现特征描述。 归一化处理 计算图像梯度 统计梯度方向 特征向量 归一化 生成特征向量 步骤 图像特征提取 3. 特征提取 22 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J]0 码力 | 38 页 | 1.28 MB | 1 年前3
机器学习课程-温州大学-01机器学习-引言机器学习与人工智能、深度学习的关系 人工智能:机器展现的人类智能 机器学习:计算机利用已有的数 据(经验),得出了某种模型,并利 用此模型预测未来的一种方法。 深度学习:实现机器学习的一种 技术 人工智能 机器学习 深度学习 5 杨立昆(Yann LeCun) 杰弗里·欣顿(Geoffrey Hinton) 本吉奥( Bengio ) 共同获得了2018年计算机科学的最高奖项 ——ACM图灵奖。 机器学习界的执牛耳者 现任字节跳动科技有限公司人 工智能实验室总监,北京大学、南京 大学客座教授,IEEE 会士,ACM 杰 出科学家,CCF 高级会员。 代表作:《统计学习方法》 机器学习界的国内泰斗 周志华,南京大学计算机科学与技 术系主任 、人工智能学院院长。 代表作:《机器学习》(西瓜书) 7 陈天奇,陈天奇是机器学习领域著名的青 年华人学者之一,本科毕业于上海交通 大学ACM班,博士毕业于华盛顿大学计 算机系。 市值/估值/融资额 1 Microsoft(微软) 计算机视觉技术、自然语言处理技术 等 办公 美国 1975年 上市 市值1.21万亿美元 2 Google(谷歌) 计算机视觉技术、自然语言处理技术 等 综合 美国 1998年 上市 市值9324亿美元 3 Facebook(脸书) 人脸识别、深度学习等 社交 美国 2004年 上市 市值5934亿美元 4 百度 计算机视觉技术、自然语言处理技 术 、知识图谱等0 码力 | 78 页 | 3.69 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . 71 2.5.3 分离计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.4 Python控制流的梯度计算 . . . . . . . . . . . . . . . . . . . . . . . 前向传播、反向传播和计算图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.7.1 前向传播 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.7.2 前向传播计算图 . . . 10.8 提交Kaggle预测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5 深度学习计算 191 5.1 层和块 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 797 页 | 29.45 MB | 1 年前3
共 221 条
- 1
- 2
- 3
- 4
- 5
- 6
- 23













