AI大模型千问 qwen 中文文档
AI agent, etc. 最新版本 Qwen1.5 有以下特点: • 6 种模型规模,包括 0.5B、1.8B、4B、7B、14B 和 72B; • 针对每种尺寸提供基础模型和 Chat 模型,并确保聊天模型按照人类偏好进行校准; • 对基础模型和 Chat 模型的多语言支持 • 基础模型和聊天模型都支持多种语言; • 支持工具调用、RAG(检索增强文本生成)、角色扮演、AI Agent 快速开始 CHAPTER1 文档 1.1 安装 要快速上手 Qwen1.5,您可以从 Hugging Face 安装 transformers 库,并使用 Qwen1.5 Collection 中的模型。 我们建议您安装最新版本的 transformers 库,或者至少安装 4.37.0 版本。 1.1.1 Pip 安装 pip install transformers -U 1.1.2 Conda 5,我们建议您首先尝试使用 transformers 进行推理。请确保已安装了 transformers>=4. 37.0 版本。以下是一个非常简单的代码片段示例,展示如何运行 Qwen1.5-Chat 模型,其中包含 Qwen1. 5-7B-Chat 的实例: from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda"0 码力 | 56 页 | 835.78 KB | 1 年前3机器学习课程-温州大学-11深度学习-序列模型
2023年05月 深度学习-序列模型 黄海广 副教授 2 03 长短期记忆(LSTM) 04 双向循环神经网络 本章目录 01 序列模型概述 02 循环神经网络(RNN) 05 深层循环神经网络 3 03 长短期记忆(LSTM) 04 双向循环神经网络 1.序列模型概述 01 序列模型概述 02 循环神经网络(RNN) 循环神经网络(RNN) 05 深层循环神经网络 4 1.序列模型概述 循环神经网络(RNN)之类的模型在语音识别、自然语言处理和 其他领域中引起变革。 5 数学符号 在这里?<1>表示Harry这个单词,它就是一个第 4075行是1,其余值都是0的向量(上图编号1所示 ),因为那是Harry在这个词典里的位置。 ?<2>是第6830行是1,其余位置都是0的向量(上 图编号2所示)。 同一层节点之间无关联,从而导致获取时序规则方面功 能不足 循环神经网络可以解决时序问题 基于语言模型(LM),故可以捕捉时序规则信息 它是如何实现的? 7 03 长短期记忆(LSTM) 04 双向循环神经网络 2.循环神经网络(RNN) 01 序列模型概述 02 循环神经网络(RNN) 05 深层循环神经网络 8 2.循环神经网络(RNN)0 码力 | 29 页 | 1.68 MB | 1 年前3李东亮:云端图像技术的深度学习模型与应用
云端图像技术的深度学习模型与应用 李东亮 360 人工智能研究院 lidongliang@360.cn 2017.10.20 SACC2017 360电脑安全产品 月活跃数达到4.42亿 360手机安全产品 移动端用户总数已达约1.49亿 360浏览器 月活跃用户数量为3.03亿 360导航 日均独立访问用户为8900万人 日均点击量约为4.51亿次 360搜索 稳定拥有35%以上的市场份额 移动端 业 务 视觉感知模型 SACC2017 视觉感知核心问题 Object Segmentation Object Classification Person, Horse, Barrier, Table, etc Object Detection 检测 识别 分割 跟踪 核 心 SACC2017 图像技术的三个核心难点>>小、快、准 小模型 线上速度快 预测准 Frequent remote upgrade CPU-constrained, real-time Cloud processing SACC2017 视觉感知模型 分割 Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward0 码力 | 26 页 | 3.69 MB | 1 年前3docker 部署单机nacos,使用外部mysql 数据库
链滴 docker 部署单机 nacos,使用外部 mysql 数据库 作者:gaga 原文链接:https://ld246.com/article/1605794547589 来源网站:链滴 许可协议:署名-相同方式共享 4.0 国际 (CC BY-SA 4.0) 1. 环境说明 mysql: 8.0.19 2. 拉取镜像 docker pull nacos/nacos-server 如下几个参数需要替换为具体参数 -e MYSQL_SERVICE_HOST=替换具体数据库实例 -e MYSQL_SERVICE_DB_NAME=数据库 -e MYSQL_SERVICE_PORT=数据库端口 -e MYSQL_SERVICE_USER=数据库用户名 -e MYSQL_SERVICE_PASSWORD=数据库密码\ docker run -d \ --name nacos \ -p mysql 数据库 -e JVM_XMS=256m \ -e JVM_XMX=256m \ -e PREFER_HOST_MODE=hostname \ -e MODE=standalone \ -e SPRING_DATASOURCE_PLATFORM=mysql \ -e MYSQL_SERVICE_HOST=替换具体数据库实例 \ -e MYSQL_SERVICE_DB_NAME=数据库\ -e0 码力 | 3 页 | 150.36 KB | 1 年前3运维上海2017-机器学习模型训练的Kubernetes实践-袁晓沛
0 码力 | 39 页 | 5.82 MB | 1 年前3《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务
扫码试看/订阅 《TensorFlow 2 项目进阶实战》视频课程 快速上手篇:动⼿训练模型和部署服务 • TensorFlow 2 开发环境搭建 • 使用 tf.keras.datasets 加载数据 • 使用 tf.data.Dataset 加载数据 • 使用 tf.keras.Model 管理模型 • Fashion MNIST 数据集介绍 • 使用 TensorFlow 2 训练分类网络 from_generator 加载 Generator 使用 tf.data.TextLineDataset 加载文本 “Hello TensorFlow” Try it! 使用 tf.keras.Model 管理模型 历史上的 tf.keras.Model • Class tf.compat.v1.keras.Model • Class tf.compat.v1.keras.models.Model • Model • Class tf.keras.models.Model 使用 tf.keras.Model 构建模型 使用 tf.keras.Model 构建模型 使用 tf.keras.Model 训练模型 保存和加载 h5 模型 保存和加载 SavedModel 模型 Fashion MNIST 数据集介绍 Original MNIST dataset The MNIST database0 码力 | 52 页 | 7.99 MB | 1 年前3从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱
从推荐模型的基础特点看 袁镱 腾讯 个⼈简介 � ⽆量系统 � 项⽬于17年启动,先后经过了6个主要版本的 迭代 � 覆盖腾讯PCG全部业务的推荐场景,⽀持腾讯 IEG,CSIG,QQ⾳乐,阅⽂等业务的部分推 荐场景 � 袁镱 博⼠,专家⼯程师 � 研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, �推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 � 系统维度 � 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 上线 预测 QQ⼩世界等) � 腾讯系内容推荐:阅⽂集团,QQ⾳乐 � Facebook推荐场景推理成本占AI推理成本的 >72% [ISCA2020 RecNMP] � 千亿级推荐模型应⽤ O1. 千亿级特征(TB级)的模型的在线/离 线训练,在线推理服务和持续上线 O2. 针对推荐特点的深度优化,达到业界先 进⽔平 推荐系统的核⼼特点 � Feature 1(基本特点) 1.1 User与推荐系统交互,7*24⼩时0 码力 | 22 页 | 6.76 MB | 1 年前3云原生图数据库解谜、容器化实践与 Serverless 应用实操
云原⽣图数据库解谜、容器化实 践与 Serverless 应⽤实操 古思为 ⽅阗 Graph DB on K8s Demystified and its Serverless applicaiton in actions. DEVELOPER ADVOCATE @ MAINTAINER OF KCD China 2021 Nov. 6th @Shanghai 古思为 wey-gu ⻘云科技研发⼯程师 Overview 了解 K8s 上的 Serverless 计算平台搭建实践:OpenFunction K8s 上的图数据库基于 KubeBuilder 的 Operator 实现,解谜图数据库的知识与应⽤ 上⼿ K8s 上的云原⽣图数据库、从零到⼀构建 Serverless 架构的智能问答助⼿ siwei.io/talks/2021-KCD laminar.fun/talks/2021-KCD com/OpenFunction/samples 图数据库简介 什么是图? 什么是图数据库? 为什么我们需要⼀个专⻔的数据库? 什么是图? "以图结构、图语义来⽤点、边、属性来查询、表示存 储数据的数据库 wikipedia.org/wiki/graph_database 了解更多关于 什么是图数据库 什么是图数据库 为什么需要图数据库? 传统数据库 图数据库 图模型的结构 图语义的查询 性能0 码力 | 47 页 | 29.72 MB | 1 年前327-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊
如计算路口交通事故预警,给予司机及时提示等,所 以将算力卸载在距离业务现场、设备最近的地方,就 是边缘计算的场景,它的价值空间远超AIoT,可以更 大范围为客户赋能,IoT和边缘计算一定走向融合。 定位为基于物模型的计算 定位为基于业务的计算 高级能力-自动化-AIoT以及赋能业务-边缘计算(Edge Cloud )-2 • 为了更好的为客户业 务场景赋能,比如路 口的交通事故识别和 预警等等需要低时延 这类 伪低代码产品,靠着模板走量批发的模式。客户买的是人工,不是技术 • 低代码平台与企业技术 栈的融合能力成为一个 重要的考验指标 • 有的企业系统已经运行 了几十年,拥有自己的 UI 体系、数据库体系和 中台体系,完全更改是 不现实的,低代码平台 要做的是与这么多技术 融合,帮助企业更好地 改进。 • 降本增效是最初级的成 果,如果能够深入企业 业务当中,低代码平台 可以带来的东西会更多。 将业务沉淀抽象化(比如 但是通过监控、日志分析、跟踪链等发 现问题根因所在周期长,依靠人的经验 (并且人的经验无法数据化沉淀),而 得到问题根因后,只能通过人工去修复 或者管理 • 而大数据或者基于监督的AI技术的成熟、 运维领域模型趋于完整、云原生底座也 更成熟的基础上,利用大数据分析根因 (关联性分析)和利用AI进行基于根因分 析的自动化处理成为可能。 • 在精细化的基础上,完整较为成熟的自 动化能力,节约了人力成本同时提高了0 码力 | 20 页 | 5.17 MB | 5 月前312-从数据库中间件到云原生——Apache ShardingSphere 架构演进-秦金卫
从【数据库中间件】到【云原生】 ——Apache ShardingSphere 架构演进 Apache Dubbo/ShardingSphere PMC 秦金卫(kimmking) 2020-12-04 20:00 云 原 生 学 院 # 1 2 目录 1.数据库框架:从数据库的性能与容量到数据库框架技术的产生 2.数据库中间件:从框架技术到分布式的数据库中间件技术 3.分布式数据库:从数据库中间件技术发展到分布式数据库 分布式数据库:从数据库中间件技术发展到分布式数据库 4.数据库网格:数据库与微服务、云原生的发展关系 5.数据库解决方案:如何基于 ShardingSphere 生态创建数据库解决方案 1.数据库框架 1.数据库框架 摩尔定律失效 分布式崛起 1.数据库框架 随着数据量的增大,读写并发的增加,系统可用性要求的提升,单机 MySQL面临: 1、容量有限,难以扩容 2、读写压力,QPS过大,特别是分析类需求会影响到业务事务 2、读写压力,QPS过大,特别是分析类需求会影响到业务事务 3、可用性不足,宕机问题 1.数据库框架 1.数据库框架 计算机领域的任何问题都可以通过增加一个中间层来解决。 数据库框架技术:在业务侧增强数据 库的能力。 直接在业务代码使用。 支持常见的数据库和JDBC。 轻量级,不需要额外的资源和机器。 1.数据库框架 1、改造对业务系统具有较大侵入性; 2、对于复杂的SQL,可能不支持; 3、对0 码力 | 23 页 | 1.91 MB | 5 月前3
共 228 条
- 1
- 2
- 3
- 4
- 5
- 6
- 23