合并与分割0 码力 | 10 页 | 974.80 KB | 1 年前3
云原生图数据库解谜、容器化实践与 Serverless 应用实操云原⽣图数据库解谜、容器化实 践与 Serverless 应⽤实操 古思为 ⽅阗 Graph DB on K8s Demystified and its Serverless applicaiton in actions. DEVELOPER ADVOCATE @ MAINTAINER OF KCD China 2021 Nov. 6th @Shanghai 古思为 wey-gu ⻘云科技研发⼯程师 Overview 了解 K8s 上的 Serverless 计算平台搭建实践:OpenFunction K8s 上的图数据库基于 KubeBuilder 的 Operator 实现,解谜图数据库的知识与应⽤ 上⼿ K8s 上的云原⽣图数据库、从零到⼀构建 Serverless 架构的智能问答助⼿ siwei.io/talks/2021-KCD laminar.fun/talks/2021-KCD com/OpenFunction/samples 图数据库简介 什么是图? 什么是图数据库? 为什么我们需要⼀个专⻔的数据库? 什么是图? "以图结构、图语义来⽤点、边、属性来查询、表示存 储数据的数据库 wikipedia.org/wiki/graph_database 了解更多关于 什么是图数据库 什么是图数据库 为什么需要图数据库? 传统数据库 图数据库 图模型的结构 图语义的查询 性能 Nebula0 码力 | 47 页 | 29.72 MB | 1 年前3
动手学深度学习 v2.0前向传播、反向传播和计算图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.7.1 前向传播 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.7.2 前向传播计算图 . . . . . . . . . . . . . . . . . . . . 604 13.9 语义分割和数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 13.9.1 图像分割和实例分割 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 13.9.2 Pascal VOC2012 语义分割数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 13.10 转置卷积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 797 页 | 29.45 MB | 1 年前3
机器学习课程-温州大学-01深度学习-引言我自己以为我做的事情 实际上我做的事情 10 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 11 深度学习-CV(计算机视觉方向) 图像获取 提取二维图像 、三维图组、 图像序列或相 关的物理数据 ,如声波、电 磁波或核磁 预处理 对图像做一 种或一些预 处理,使图 像满足后继 处理的要 求 ,如:二次 取样保证图 像坐标的正 确,平滑、 去噪等 特征提取 从图像中提取 各种复杂度的 特征,如:线 ,边缘提取和 脊侦测,边角 检测、斑点检 测等局部化的 特征点检测 检测/分割 对图像进行分割 ,提取有价值的 内容,用于后继 处理, 如:筛 选特征点,分割 含有特定目标的 部分 高级处理 验证得到的 验证得到的 数据是否匹 配前提要求 ,估测特定 系数,对 目 标进行分类 •图像分类 •目标检测 •图像分割 •目标跟踪 •OCR文字识别 •图像滤波与降噪 •图像增强 •风格迁移 •三维重建 •图像检索 •GAN 12 深度学习-CV典型应用案例 翻译 传统翻译采用人工查词的方式,不但耗时长 ,而且错误率高。图像识别技术(OCR)的出 现大大提升了翻译的效率和准确度,用户通 过简单的拍照、截图或划线就能得到准确的0 码力 | 80 页 | 5.38 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112,难免出现理解偏差甚 至错缪之处,若能大方指出,作者将及时修正,不胜感激。 龙良曲 2021 年 10 月 19 日 预览版202112 声 明 得益于简洁优雅的设计理念,基于动态图的 PyTorch 框架在学术圈广受好评,绝大多数 最新算法是基于 PyTorch 实现的,众多的第三方 AI 框架应用,例如 mmdetection、mmaction2、 transformer、speechbrain 索引与切片 4.7 维度变换 4.8 Broadcasting 4.9 数学运算 4.10 前向传播实战 4.11 参考文献 第 5 章 PyTorch 进阶 5.1 合并与分割 5.2 数据统计 5.3 张量比较 5.4 填充与复制 5.5 数据限幅 5.6 高级操作 5.7 经典数据集加载 5.8 MNIST 测试实战 5.9 参考文献 深度学习 图 1.1 人工智能、机器学习、神经网络和深度学习 1.1.2 机器学习 机器学习可以分为有监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning,简称 RL),如图 1.2 所示。 机器学习 有监督学习 无监督学习 强化学习 图 1.2 机器学习的分类0 码力 | 439 页 | 29.91 MB | 1 年前3
机器学习课程-温州大学-07深度学习-卷积神经网络、三维图组、 图像序列或相 关的物理数据 ,如声波、电 磁波或核磁 共振的深度、 吸收度或反射 度 预处理 对图像做一 种或一些预 处理,使图 像满足后继 处理的要 求 ,如:二次 取样保证图 像坐标的正 确,平滑、 去噪等 特征提取 从图像中提取 各种复杂度的 特征,如:线 ,边缘提取和 脊侦测,边角 检测、斑点检 测等局部化的 特征点检测 检测/分割 对图像进行分割 ,提取有价值的 ,提取有价值的 内容,用于后继 处理, 如:筛 选特征点,分割 含有特定目标的 部分 高级处理 验证得到的 数据是否匹 配前提要求 ,估测特定 系数,对 目 标进行分类 •图像分类 •目标检测 •图像分割 •目标跟踪 •OCR文字识别 •图像滤波与降噪 •图像增强 •风格迁移 •三维重建 •图像检索 •GAN 5 图像分类 6 目标检测 目标检测结合了目标分类和定位两个任务。 one-stage(YOLO YOLOV3,YOLOV4, YOLOV5,SSD等) two-stage(OverFeat,R-CNN,Fast R-CNN,Faster R-CNN 等) 7 目标检测 8 目标检测 9 图像分割 10 目标跟踪 11 计算机视觉 图像的数字表示 一张图片数据量是64×64×3,因为每张图片都有3个颜色通道。 如果计算一下的话,可得知数据量为12288 12 01 计算机视觉概述0 码力 | 29 页 | 3.14 MB | 1 年前3
机器学习课程-温州大学-14深度学习-Vision Transformer (ViT) Positional Encoding 1.背景知识 6 为什么需要用transformer Transformer原本是用来做 NLP的工作的,所以ViT的 首要任务是将图转换成词 的结构,这里采取的方法 是如上图左下角所示,将 图片分割成小块,每个小 块就相当于句子里的一个 词。这里把每个小块称作 Patch,而Patch Embedding 就是把每个Patch再经过一 个全连接网络压缩成一定 维度的向量。 2.模型介绍 21 左图展示了模型学习到的图嵌入,中图展示了学习到的位置嵌入,右图展示了不同层注意 力的平均距离。 2.模型介绍 22 加入位置信息的原因 如下图所示,将左图的patch打乱,则两个图是不同的,但 对于Transformer的最后一层来说会得到相同的特征(认为是 一个图),为了让其能够识别是两个图,加入位置信息(使 两个图不一样)。 2.模型介绍 23 Patch 在CNN中,局部性、二维邻域结构和平移等方差被融入到整个模型的每一层中。 在ViT中,只有MLP层是局部的、平移等变的,而自注意层是全局的。 二维邻域结构的使用非常少:在模型的开始通过将图像分割成小块,在微调时调整不同分辨率图 像的位置嵌入。 除此之外,初始化时的位置嵌入不携带关于patch二维位置的信息,并且patch之间的所有空间关 系都需要从头学习。 4.模型缺点与改进 29 改进 作0 码力 | 34 页 | 2.78 MB | 1 年前3
《TensorFlow 2项目进阶实战》5-商品识别篇:使用ResNet识别你的货架商品ResNet 识别你的货架商品 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程 • 基础:图像分类问题定义与说明 • 基础:越来越深的图像分类网络 • 应⽤用:检测SKU抠图与分类标注流程 • 应⽤用:分类训练集与验证集划分 • 应⽤用:使⽤用TensorFlow 2训练ResNet • 应⽤用:使用ResNet识别货架商品 • 扩展:图像分类常用数据集综述 • GoogLeNet/Inception(2014) ResNet(2015) ResNet(2015) 历年 SOTA 模型对比 应⽤用:检测 SKU 抠图与分类标注流程 … 检测框 -> SKU 小图 … SKU 小图 -> 手动分类 “Hello TensorFlow” Try it! 应⽤用:分类训练集与验证集划分 https://www.pinlandata.com/rp2k_dataset https://www.pinlandata.com/rp2k_dataset 扩展:图像分类更多应⽤用场景介绍 图像分类应用:牛脸识别与畜牧险维保 图像分类应用:户型图识别(空间、家具) 原始户型图 空间分割 (整体效果) 空间分割 (中间结果) 图像分类应用:智能相册 图像分类应用:瑕疵检测 扫码试看/订阅 《 TensorFlow 2项目进阶实战》视频课程0 码力 | 58 页 | 23.92 MB | 1 年前3
机器学习课程-温州大学-08机器学习-集成学习分裂后右子树分数 分裂前左、右子树的分数: 不分割可以拿到的分数 加入新叶子节点引入的复杂度代价 34 3.XGBoost 使用贪心方法,选增益( ???? )最大的分裂方式 贪心方法,众多????中找到最大值做为最优分割节点(split point),因此模型会 将所有样本按照(一阶梯度)从小到大排序,通过遍历,查看每个节点是否需要 分割,计算复杂度是:决策树叶子节点数 – 1。 XGBoost的分裂方式 eature1 ?21 ?22?23 ?11 ?12 ?11 ?12 ?11 ?12 ?21 ?22?23 ?21 ?22?23 直方图算法还可以进一步 加速:一个叶子节点的直 方图可以由它的父亲节点 的直方图与其兄弟的直方 图做差得到。 ?eature1 ?eature1 ?eature2 ?eature2 ?eature2 47 4.LightGBM 建树过程的两种方法:Level-wise和Leaf-wise0 码力 | 50 页 | 2.03 MB | 1 年前3
《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别早期的Captcha验证码 "smwm" ,由EZ-Gimpy 程序产生,使用扭曲的字母和背景颜色梯度 一种更现代的CAPTCHA,其不使用扭曲的背景及 字母,而是增加一条曲线来使得图像分割 (segmentation)更困难。 另一种增加图像分割难度的方法为将符号彼此拥挤 在一起,但其也使得真人用户比较难以识别 要求用户识别图片的验证方式,本图为模拟12306 网站的验证界面 验证码(CAPTCHA)生成 image.ImageCaptcha.generate(‘1234’) – 生成验证码图像 “Hello TensorFlow” Try it 输入与输出数据处理 输入数据处理 图像处理:RGB图 -> 灰度图 -> 规范化数据 输入数据处理 适配 Keras 图像数据格式:“channels_frist” 或 “channels_last” 输出数据处理 One-hot 编码:验证码转向量0 码力 | 51 页 | 2.73 MB | 1 年前3
共 139 条
- 1
- 2
- 3
- 4
- 5
- 6
- 14













