积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(18)数据库中间件(18)

语言

全部中文(简体)(9)英语(7)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.127 秒,为您找到相关结果约 18 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 5.1.2 Document

    system accurately. 4.9.2 Challenges pressure testing on production environment is a complex and huge task. Coordination and adjustments between microservices and middlewares required to cope with the transparent ), STREAM_CHANNEL(TYPE(NAME=MEMORY, PROPERTIES("block-queue-size"=10000))), COMPLETION_DETECTOR(TYPE(NAME=IDLE, PROPERTIES("incremental-task-idle-seconds- threshold"=1800))), DATA_CONSISTENCY_CHE {"workerThread":40, "batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":"10000"}} | {"type ":"IDLE","props":{"incremental-task-idle-seconds-threshold":"1800"}} | {"type": "DATA_MATCH","props":
    0 码力 | 503 页 | 3.66 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.1 Document

    system accurately. 4.9.2 Challenges pressure testing on production environment is a complex and huge task. Coordination and adjustments between microservices and middlewares required to cope with the transparent 1.1 STREAM_CHANNEL(TYPE(NAME=MEMORY, PROPERTIES("block-queue-size"=10000))), COMPLETION_DETECTOR(TYPE(NAME=IDLE, PROPERTIES("incremental-task-idle-minute- threshold"=30))), DATA_CONSISTENCY_CHECKE {"workerThread":40, "batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":"10000"}} | {"type ":"IDLE","props":{"incremental-task-idle-minute-threshold":"30"}} | {"type":"DATA_ MATCH","props":{"chunk-size":"1000"}}
    0 码力 | 458 页 | 3.43 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 document

    system accurately. 8.9.2 Challenges pressure testing on production environment is a complex and huge task. Coordination and adjustments between microservices and middlewares required to cope with the transparent logs. f a l s e T r u e kerne l‐exe cutor ‐size (?) i n t Set the size of the thread pool for task pro‐ cessing. Each ShardingSphere‐ DataSource uses an independent thread pool, and different "shardingSize":10000000} | {"workerThread ":20,"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":"2000"}} | +--------------------------------------------------------------+-------------------
    0 码力 | 602 页 | 3.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0 Document

    and performance of the system. 4.8.2 Challenges Full‐link pressure testing is a complex and huge task. Coordination and adjustments between microser‐ vices and middleware required to cope with the transparent blockQueueSize: 10000 workerThread: 40 clusterAutoSwitchAlgorithm: type: IDLE props: incremental-task-idle-minute-threshold: 30 dataConsistencyCheckAlgorithm: type: DEFAULT mode: type: Cluster repository: Description De fault value bloc kQueu eSize Queue size of data transmission channel 10000 wo rkerT hread Worker thread pool size, the number of migration task threads allowed to run concurrently 40
    0 码力 | 403 页 | 3.15 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.4.1 Document

    system accurately. 8.9.2 Challenges pressure testing on production environment is a complex and huge task. Coordination and adjustments between microservices and middlewares required to cope with the transparent logs. f a l s e T r u e kerne l‐exe cutor ‐size (?) i n t Set the size of the thread pool for task pro‐ cessing. Each ShardingSphere‐ DataSource uses an independent thread pool, and different "shardingSize":10000000} | {"workerThread ":20,"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":"2000"}} | +--------------------------------------------------------------+-------------------
    0 码力 | 572 页 | 3.73 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.1 Document

    system accurately. 3.9.2 Challenges pressure testing on production environment is a complex and huge task. Coordination and adjustments between microservices and middlewares required to cope with the transparent logs. f a l s e T r u e kern el‐e xecu tor‐ size (?) i n t Set the size of the thread pool for task pro‐ cessing. Each ShardingSphere‐ DataSource uses an independent thread pool,and different "shardingSize":10000000} | {"workerThread ":40,"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":10000}} | +--------------------------------------------------------------+-------------------
    0 码力 | 523 页 | 4.51 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.2.0 Document

    system accurately. 3.9.2 Challenges pressure testing on production environment is a complex and huge task. Coordination and adjustments between microservices and middlewares required to cope with the transparent logs. f a l s e T r u e kernel‐exe cutor‐ size (?) i n t Set the size of the thread pool for task pro‐ cessing. Each ShardingSphere‐ DataSource uses an independent thread pool,and different "shardingSize":10000000} | {"workerThread ":40,"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":10000}} | +--------------------------------------------------------------+-------------------
    0 码力 | 483 页 | 4.27 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.0.0-alpha Document

    each result set (which is realized by Java Comparable interface) and put them into the priority queue. Each time when acquiring the next piece of data, it only needs to move down the result set in the Then put them into the priority queue. the data value of t_score_0 is the biggest, followed by that of t_score_2 and t_score_1 in sequence. Thus, the priority queue is ordered by the sequence of t_score_0 invocation. We can see from the diagram that when using next invocation, t_score_0 at the first of the queue will be popped out. After returning the data value currently pointed by the cursor (i.e., 100) to
    0 码力 | 311 页 | 2.09 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    ), STREAM_CHANNEL(TYPE(NAME=MEMORY, PROPERTIES("block-queue-size"=10000))), COMPLETION_DETECTOR(TYPE(NAME=IDLE, PROPERTIES("incremental-task-idle-seconds- threshold"=1800))), DATA_CONSISTENCY_CHE {"workerThread":40, "batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":"10000"}} | {"type ":"IDLE","props":{"incremental-task-idle-seconds-threshold":"1800"}} | {"type": "DATA_MATCH","props": 算法类型。可选项:MEMORY props: # 算法属性 block-queue-size: # 属性:阻塞队列大小 completionDetector: # 作业是否接近完成检测算法。如果不配置则无法自动进行后续步骤,可以通 过 DistSQL 手动操作。 type: # 算法类型。可选项:IDLE props: # 算法属性 incremental-task-idle-seconds-threshold:
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    "shardingSize":10000000} | {"workerThread ":20,"batchSize":1000} | {"type":"MEMORY","props":{"block-queue-size":"2000"}} | +--------------------------------------------------------------+------------------- (TYPE(NAME='TPS', PROPERTIES('tps'='2000')))), STREAM_CHANNEL ( TYPE(NAME='MEMORY',PROPERTIES('block-queue-size'='2000'))) ); 保留字 ALTER、MIGRATION、RULE、READ、WRITE、WORKER_THREAD、BATCH_SIZE、SHARDING_SIZE、 +-------------------------------+--------------------------+---------------+ | 0 | ds_1 | EXECUTE_INCREMENTAL_TASK | true | 6 | 100 | 25 | | +------+-------------+--------------------------+--------+-------------------------
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSphere5.1Documentv55.0document5.45.2alpha中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩