开源中国 2023 大模型(LLM)技术报告:这些框架经过优化,以充分利用 GPU、TPU 等高性能计算硬件,以加速模型 的训练和推理过程。 :为了处理大型数据集和大规模参 数网络,这些框架通常设计得易于水平扩展, 支持在多个处理器或多个服务器上并行处理。 :它们提供工具来有效地加 载、处理和迭代大型数据集,这对于训练大 型模型尤为重要。 国产深度学习框架 OneFlow 架构 (图源:https://www.oneflow.or 益于其简洁的语法、强大的库支持(如 )和深度学习框架(如 )。 此外, ,C++ 有时 用于优化计算密集型任务,而 Java 在企业环境中处理模型部署和系 统集成方面常见。JavaScript 适用于 Web 环境的 LLM 应用。 13 / 32 LLM 基础设施:编程语言 2023 年是大语言模型 (LLM) 之年,Python 作为人工智能领域使用度最高的编程语言,在 2023 年到底有多火?0 码力 | 32 页 | 13.09 MB | 1 年前3
Deepseek R1 本地部署完全手册DeepSeek-R1-Q4_K_M 404 GB ≥500 GB ⾼性能服务器/云GPU 下载地址: HuggingFace模型库 Unsloth AI官⽅说明 2. 硬件配置建议 硬件类型 推荐配置 性能表现(短⽂本⽣成) 消费级设备 Mac Studio(192GB统⼀内存) 10+ token/秒 ⾼性能服务器 4×RTX 4090(96GB显存+384GB内存) 7-8 token/秒(混合推理)0 码力 | 7 页 | 932.77 KB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502• 安全人才规模全球领先 • 漏洞挖掘能力全球领先 四个全球领先 世界的360 • 实战能力第一,实战是检验安全企业能力的唯一标准 • 安全研发投入第一,相当于第2名到第10名的总和 • 服务器和算力投入安全行业第一 • 创新能力第一,专利申请1.5万件,安全行业最多 • 服务和响应能力第一 • 用户数量第一,覆盖225个国家和地区的15亿终端 • 企业客户规模第一的网安公司 • 件分析平台 分析研判平台 端 • 服务全球15亿终端 • 覆盖全球225个国家 和地区 终端探针密布 云 数 智 知识 人 云端数据汇聚 • 探针数据上传到云 端 • 20万台服务器 • 210个数据中心 • 4000G出口带宽 • 1000P算力规模 大数据分析 • 总规模2.2EB,每天新 增1.5PB • 测绘数据300亿条 • 90亿+域名信息 • 存活网址库总量500000 码力 | 76 页 | 5.02 MB | 6 月前3
国家人工智能产业综合标准化体系建设指南(2024版)口协议、性能评定、试验方法等技术要求,包括智能传感器的架 构、指令、数据格式、信息提取方法、信息融合方法、功能集成 方法、性能指标和评价方法等标准。 4. 计算设备标准。规范人工智能加速卡、人工智能加速模 组、人工智能服务器等计算设备,及使能软件的技术要求和测试 方法,包括人工智能计算设备虚拟化方法,人工智能加速模组接 口协议和测试方法,及使能软件的访问协议、功能、性能、能效 的测试方法和运行维护要求等标准。 50 码力 | 13 页 | 701.84 KB | 1 年前3
Dynamic Model in TVMAmazon Web Services, Inc. or its Affiliates. All rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services while loop Limitation of TVM/graph runtime ● Cannot compile and run dynamic models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim Graph dispatch for a (sub-)graph In collaboration with Jared Roesch, Zhi Chen, Wei Chen© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. “Any” in Relay typing Any: represent an unknown0 码力 | 24 页 | 417.46 KB | 6 月前3
Bring Your Own Codegen to TVM© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon/Intel Confidentia Presenter: Zhi Chen, Cody Yu Amazon SageMaker Neo, Deep Engine Science Bring Your Own Codegen to TVM TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Considering You... Design and manufacture a deep learning chip which achieves amazing performance on widely-used operators Suppression (NMS) is too new to be supported by your chip But NMS is supported by TVM!© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Let TVM Be the Compiler of Your Chip Your0 码力 | 19 页 | 504.69 KB | 6 月前3
TVM Meetup: Quantization© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Animesh Jain Amazon SageMaker Neo Compilation of Quantized Models in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates 𝑟𝑒𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 = 𝑠𝑐𝑎𝑙𝑒 ∗ (𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 − 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡)© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Quantization in TVM • Quantization within pre-quantized graph in TFLite or MxNet • Use high-level wrapper ops of QNN dialect© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. TVM Overview Framework Graph Mxnet TF ….0 码力 | 19 页 | 489.50 KB | 6 月前3
Trends Artificial Intelligence
one can make. The magic of watching AI do your work for you feels like the early days of email and web search – technologies that fundamentally changed our world. The better / faster / cheaper impacts 1993 with release of the World Wide Web (WWW) into the public domain, which allowed users to create websites; however, Tim Berners-Lee invented the World Wide Web in 1989, per CERN. Source: Google, USA Morgan Stanley, ‘Google and Meta: AI vs. Fundamental 2H Debates’ (7/23), Our World in Data, other web sources per MS Years to 50% Adoption of Household Technologies in USA, per Morgan Stanley Consumer0 码力 | 340 页 | 12.14 MB | 5 月前3
Gluon Deployment© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Deploying GluonCV models using TVM© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon with TVM© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Deploy GluonCV Models https://arxiv.org/pdf/1907.02154.pdf© 2019, Amazon Web Services, Inc. or its Affiliates Amazon Trademark Overall Performance AWS DeepLens Acer aiSage NVIDIA Jetson Nano© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Effects of Vision-specific0 码力 | 8 页 | 16.18 MB | 6 月前3
OpenAI - AI in the Enterpriseexample of OpenAI’s agentic approach. Leveraging its own virtual browser, Operator can navigate the web, click on buttons, fill in forms, and gather data just like a human would. It can also run processes human intervention, such as: Automating software testing and QA using Operator to interact with web apps like a real user, flagging any UI issues. Updating systems of record on behalf of users, without0 码力 | 25 页 | 9.48 MB | 6 月前3
共 13 条
- 1
- 2













