国家人工智能产业综合标准化体系建设指南(2024版)1 国家人工智能产业综合标准化体系建设指南 (2024版) 为深入贯彻落实党中央、国务院关于加快发展人工智能 的部署要求,贯彻落实《国家标准化发展纲要》《全球人工 智能治理倡议》,进一步加强人工智能标准化工作系统谋划, 加快构建满足人工智能产业高质量发展和“人工智能+”高水 平赋能需求的标准体系,夯实标准对推动技术进步、促进企 业发展、引领产业升级、保障产业安全的支撑作用,更好推 完善人工智能产业标准体系。 二、总体要求 以习近平新时代中国特色社会主义思想为指导,全面贯 彻党的二十大和二十届二中全会精神,认真落实中央经济工 作会议和全国新型工业化推进大会部署要求,完整、准确、 全面贯彻新发展理念,统筹高质量发展和高水平安全,加快 赋能新型工业化,以抢抓人工智能产业发展先机为目标,完 善人工智能标准工作顶层设计,强化全产业链标准工作协 同,统筹推进标准的研究、制定、实施和国际化,为推动我 国人工智能产业高质量发展提供坚实的技术支撑。 到 2026 年,标准与产业科技创新的联动水平持续提升, 新制定国家标准和行业标准 50 项以上,引领人工智能产业 高质量发展的标准体系加快形成。开展标准宣贯和实施推广 的企业超过 1000 家,标准服务企业创新发展的成效更加凸 显。参与制定国际标准 20 项以上,促进人工智能产业全球 化发展。 坚持创新驱动。优化产业科技创新与标准化联动机制, 加快人工智能领域关键共性技术研究,推动先进适用的科技0 码力 | 13 页 | 701.84 KB | 1 年前3
开源中国 2023 大模型(LLM)技术报告基础设施:编程语言 LLM 的训练和应用通常使用多种编程语言,取决于任务的需求和团 队的偏好。 。它的广泛使用得 益于其简洁的语法、强大的库支持(如 )和深度学习框架(如 )。 此外, ,C++ 有时 用于优化计算密集型任务,而 Java 在企业环境中处理模型部署和系 统集成方面常见。JavaScript 适用于 Web 环境的 LLM 应用。 13 / 32 LLM 基础设施:编程语言 年是大语言模型 (LLM) 之年,Python 作为人工智能领域使用度最高的编程语言,在 2023 年到底有多火? 从各种开发者报告、编程语言榜单来看。只要出现有关编程语言流行度的排名, ,而 Java、C/C++ 等 同样在 LLM 开发中发挥关键作用的语言紧随其后。 14 / 32 LLM 基础设施:编程语言 2023 年 9 月面向大众开放 创业公司 Modular AI 开 发 结合了 随着国内大模型数量激增,AI 算力需求从 2022 年开始持续上 涨,国内市场出现一卡难求的情况。根据 IDC 预计,到 2026 年 AI 推理的负载比例将进一步提升至62.2%,特别是预训练大 模型几乎成为 AI 开发的标准范式。同时,这一需求也导致了 NVIDIA A100 GPU 的价格在几个月内暴涨超过 50%,而且大 量断货。 根据研究测算,单次 GPT- 3 模型(175B)训练,在规模 300B token0 码力 | 32 页 | 13.09 MB | 1 年前3
DeepSeek从入门到精通(20250204)两种伦理观的差异” 一次性提问复杂逻辑 如何向AI表达需求 需求类型 特点 需求表达公式 推理模型适配策略 通用模型适配策略 1. 决策需求 需权衡选项、评估风险、 选择最优解 目标 + 选项 + 评估标准 要求逻辑推演和量化分析 直接建议,依赖模型经验归纳 2. 分析需求 需深度理解数据/信息、 发现模式或因果关系 问题 + 数据/信息 + 分析 方法 触发因果链推导与假设验 证 表层总结或分类 设计能激发AI创新思维的提示语 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 合特定的 格式和风格要求 提升输出一致性 风格元素 + 知识域元素 + 约束条 件元素 格式元素 + 质量控制元素 通过统一的风格和专业领域知识确保输出的一致性,同时使用约束条件和质量 控制维持标准 增强交互体验 迭代指令元素 + 输出验证元素 + 质量控制元素 任务指令元素 + 背景元素 建立动态的交互模式,允许AI进行自我验证和优化,同时根据任务和背景灵活 调整输出 表2-1-1 提示语元素组合矩阵0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通两种伦理观的差异” 一次性提问复杂逻辑 如何向AI表达需求 需求类型 特点 需求表达公式 推理模型适配策略 通用模型适配策略 1. 决策需求 需权衡选项、评估风险、 选择最优解 目标 + 选项 + 评估标准 要求逻辑推演和量化分析 直接建议,依赖模型经验归纳 2. 分析需求 需深度理解数据/信息、 发现模式或因果关系 问题 + 数据/信息 + 分析 方法 触发因果链推导与假设验 证 表层总结或分类 设计能激发AI创新思维的提示语 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 合特定的 格式和风格要求 提升输出一致性 风格元素 + 知识域元素 + 约束条 件元素 格式元素 + 质量控制元素 通过统一的风格和专业领域知识确保输出的一致性,同时使用约束条件和质量 控制维持标准 增强交互体验 迭代指令元素 + 输出验证元素 + 质量控制元素 任务指令元素 + 背景元素 建立动态的交互模式,允许AI进行自我验证和优化,同时根据任务和背景灵活 调整输出 表2-1-1 提示语元素组合矩阵0 码力 | 103 页 | 5.40 MB | 9 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单高频交易数据,识别市场趋势和交易模式,为 交易者提供实时决策支持。 • 数据报告自动化生成:基于o3mini自动 生成格式化的数据报告,包括图表、表格和文 字说明,帮助管理者快速理解分析结果。 • 数据接口标准化:根据标准格式输出数据, 利用o3mini方便不同系统和平台之间的数据 共享,提升跨机构协作效率。 • 情感分析与数据解读:利用o3mini结合 情感分析,对数据进行深入解读,帮助市场调 研等领域理解消费者情感,优化产品和策略。 梳理,以及国际文献的跨语言分析。 幻觉克服:以现有真实数据库作为支撑,借助由专家设 计撰写的提示词,精准规避AI生成中的幻觉问题。 高规范格式输出:所生成的综述文档格式规范、结构清 晰,符合学术论文标准,用户几乎无需进行二次整理。 中科院PubScholar平台 “PubScholar”平台是由中国科学院开发 的公益学术平台,整合了国内外多种学术 资源。该平台提供文献检索、引用分析、 文献推荐等功能,用户可通过平台高效获 术创新进行分类,逻辑性强 内容结构 通过逻辑排序、层次化分段 和观点与事实的清晰区分, 确保生成的内容符合学术写 作标准。内容结构完整,包 括研究现状、简要评述和主 要参考文献等板块。同时, 研究现状部分围绕研究主题 进一步细分为多个研究层次, 结构合理 内容结构完整,格式较一般 综述结构较为标准,在中文 文献分析上具有优势 在写作前,系统会先生成详细的写 作大纲,为文章的结构提供清晰的 框架。文本内容结构清晰,包括历0 码力 | 85 页 | 8.31 MB | 8 月前3
人工智能安全治理框架 1.0全国网络安全标准化技术委员会 2024年9月 人工智能 安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 (d)数据泄露风险。人工智能研发应用过程中,因数据处理不当、非授 权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 识产权。 (c) 对训练数据进行严格筛选,确保不包含核生化导武器等高危领域敏 感数据。 (d) 训练数据中如包含敏感个人信息和重要数据,应加强数据安全管理, 符合数据安全和个人信息保护相关标准规范。 (e) 使用真实、准确、客观、多样且来源合法的训练数据,及时过滤失 效、错误、偏见数据。 (f) 向境外提供人工智能服务,应符合数据跨境管理规定。向境外提供 人工智能模型算法,应符合出口管制要求。0 码力 | 20 页 | 3.79 MB | 1 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502eek上,不用重复发明轮子 公开蒸馏方法,帮助其他模型提升能力,实现了模型制造模型,犹如工业母机 小模型可部署在企业内电脑或一体机上,使用成本降低,形成分布式推理网络 技术门槛降低, 可标准化、SaaS化部署,下载就能用 DeepSeek颠覆式创新——成本暴跌 35政企、创业者必读 惠及全球人民,科技平权,技术平民化 运营商、云服务可免费用,降低云服务成本 大型企业可使 安全大数据 (攻击样本库、病毒基因库、安全知识库 等)规模全球领先 • 安全人才规模全球领先 • 漏洞挖掘能力全球领先 四个全球领先 世界的360 • 实战能力第一,实战是检验安全企业能力的唯一标准 • 安全研发投入第一,相当于第2名到第10名的总和 • 服务器和算力投入安全行业第一 • 创新能力第一,专利申请1.5万件,安全行业最多 • 服务和响应能力第一 • 用户数量第一,覆盖225个国家和地区的15亿终端0 码力 | 76 页 | 5.02 MB | 6 月前3
清华大学 普通人如何抓住DeepSeek红利次数(50次、100次、150次)对生成内容相似性与创新性的影响, 建立了测量AI触及知识循环边界的方式。 AI的内容生成有一定的边界效应 研究将智能体知识循环边界操作化为生成内容的差异值,衡量标准为生成文本的平均相似度与重复率的加权值。 相似度计算 采用余弦相似度算法,将文本转化为词频向量,计算向量点积 与模长乘积的比值,评估文本间的相似性,取值范围为[-1, 1], 值越接近1表示相似性越高。该方法广泛应用于信息检索和自 为什么要检验?回归知识的定义:有效性和社会指导性 p 如何检验?实验的方式 探讨智能体生成内容在知识准确性、逻辑一致性和内容创新 性方面的表现。分析其生成知识在不同语境、任务类型中的 适应性。提出衡量生成知识质量的标准与评价框架。 如何检验AI生成知识的创新性和价值 提示语 (Prompt) 是用户输入给Al 系统的指令或信息, 用于引导Al生成特定的输出或执行特定的任务。简单来说,提 示语 就是0 码力 | 65 页 | 4.47 MB | 8 月前3
00 Deepseek官方提示词它将提供中文翻译结果。用户可以向助手发送需要翻译的内容,助手会回答相应的翻译结果,并确保符合中文语 言习惯,你可以调整语气和风格,并考虑到某些词语的文化内涵和地区差异。同时作为翻译家,需将原文翻译成 具有信达雅标准的译文。"信" 即忠实于原文的内容与意图;"达" 意味着译文应通顺易懂,表达清晰;"雅" 则 追求译文的文化审美和语言的优美。目标是创作出既忠于原作精神,又符合目标语言文化和读者审美的翻译。 USER0 码力 | 4 页 | 7.93 KB | 8 月前3
清华大学第二弹:DeepSeek赋能职场(规范性) 强规范约束 (操作路径明确) 弱规范约束 (操作路径开放) Result (结果导向) 目标确定性高 (结果可预期) 目标开放性高 (结果多样性) Route (路径灵活性) 线性路径 (流程标准化) 网状路径 (多路径探索) Responsiveness (响应模式) 被动适配 (按规则执行) 主动创新 (自主决策) Risk (风险特征) 低风险 (稳定可控) 高风险 (不确定性高)0 码力 | 35 页 | 9.78 MB | 8 月前3
共 15 条
- 1
- 2













