普通人学AI指南. . . . . . . . 8 2.2.6 Midjourney . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 AI 视频工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Sora (OpenAI 公司) . . . . . 40 3 1 AI 大模型基础 1.1 AIGC AIGC 是指使用人工智能模型生成内容的技术。这些内容可以包括图像、音频、 文本、视频、3D 模型等。具体来说,AIGC 技术可以生成如下类型的内容: • 图像:如照片、原创艺术作品 • 音频:如视频游戏中的配音、音乐 • 文本:如代码、广告文案、小说 • 3D 模型:如角色、场景 目前,AIGC 技术处于早期阶段,最常见的产品形态是基于文本的,通过用 的研发目标是创造出可以广泛地模拟人类认知能力的智 能系统。 1.3 大模型 大模型通常指的是大规模的人工智能模型,这类模型通过训练大量的数据来获 得广泛的知识和能力。这些模型通常具有庞大的参数数量,能够处理复杂的任 务,如自然语言理解、图像识别、语音识别等。 闭源大模型包括 OpenAI 的 GPT 系列和 Google 的 BERT。这些模型因其 高效的学习能力和强大的通用性而受到关注。 开源大模型以0 码力 | 42 页 | 8.39 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502从早期基于规则的专家系统,走向基于学习训练的感知型AI 从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI 从擅长理解的认知型AI,发展到擅长文字生成的生成式AI 从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI 从生成式AI,发展到推理型AI 专家系统 感知AI 认知AI 生成式AI 多模态AI 推理式AI 9政企、创业者必读 人工智能发展历程(二) 从单纯对话的大模型AI,发展到具有行动和执行能力的智能体AI 国外:GPT-4等效智能在过去18个月内价格下降240倍 国内:大模型「亏本」卖,可以「白嫖」大模型API能力 19政企、创业者必读 DeepSeek出现之前的十大预判 之七 多模态越来越重要 由文本生成迈向图像、视频、3D内容与世界模拟 多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地 能够调用各种工具,具有行动能力 未来产业 创意 能力 赋能企业 数转智改 数学计算 语义理解 逻辑推理 语言翻译 文本创作 自动驾驶 具身智能 1 2 4 5 知识问答 代码编程 文本生成 多轮对话 图像生成 视频生成 音频生成 A I 数字人 生物制药 新材料研究 脑机接口 基础科学 能源自由 宇宙探索 生命科学 科学 能力 6 AI Fo r Science 知识管理( 内部知识管理、 外部情报分析、0 码力 | 76 页 | 5.02 MB | 6 月前3
DeepSeek从入门到精通(20250204)国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解0 码力 | 103 页 | 5.40 MB | 9 月前3
清华大学第二弹:DeepSeek赋能职场李默非(清华大学人工智能学院拟录博士生):人机共生之基座大模型研究研发 • 何静(清华博士后、北航助理教授):人机共生之快生引擎研究研发 • 尤可可(清华博士后、北石化助理教授):人机共生之AIGC短视频 • 安梦瑶(清华大学博士后):人机共生之AI诊疗研究 • 陶炜(清华大学博士生):人机共生之AI实时增强技术的探索与实践 • 胡晓李(清华大学博士后):人机共生之游戏设计 • 余梦珑(清华大学博士后):人机共生之媒体智能体应用 2021全球人工智能技术创新大赛-小布助手对话短文本语义匹配 一等奖 2022全球人工智能技术创新大赛-商品标题实体识别 一等奖 第十八届中国计算语言学大会-小牛杯中文幽默计算 一等奖 第十届全国社会媒体处理大会-中文隐式情感分析 一等奖 2021全球开放数据应用创新大赛-基于文本挖掘的企业隐患排查质量分析模型 第一名 2021中国计算机学会大数据与计算智能大赛-“千言〞 问题匹配鲁棒性评测 第一名 •决策权限 约束层: 3. 边界系统 (Boundary System) •伦理规范 •安全限制 •资源约束 操作层: 4. 工作引擎 (Operation Engine) •输入处理 •执行流程 •输出规范 如何使用DeepSeek制作可视化图表? 如何使用DeepSeek制作可视化图表? 角色: Mermaid图表代码生成器 功能: 根据用户提供的流程或架构描0 码力 | 35 页 | 9.78 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。以 GPT 系列为代表,LLM 以其在自然语言 处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM 在多个领域都取得了令人瞩目的成就。在自然语言处 理领域,GPT 系列模型在文本生成、问答系统和对话生成 等任务中展现出色的性能。在知识图谱构建、智能助手开发 (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 方法为语言任务提供了前所未有的性能,以此为基础,多模态融合的应用使得 LLM 更全面地处理各种 信息,支持更广泛的应用领域。 图源:https://postgresml.org/docs/.gitbook/assets/ml_system.svg 4 / 32 LLM 基础设施 LLM 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必要的工具和库,使开发者能够更容易地处理大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。 微调(Fine Tuning)是在大模型框架基础上进行的一个 关键步骤。在模型经过初步的大规模预训练后,微调是 用较小、特定领域的数据集对模型进行后续训练,以使0 码力 | 32 页 | 13.09 MB | 1 年前3
国家人工智能产业综合标准化体系建设指南(2024版)协同任务的交互协议、执行效率和协同性能等标准。 (三)关键技术标准 关键技术标准主要包括机器学习、知识图谱、大模型、自然 语言处理、智能语音、计算机视觉、生物特征识别、人机混合增 强智能、智能体、群体智能、跨媒体智能、具身智能等标准。 1. 机器学习标准。规范机器学习的训练数据、数据预处理、 模型表达和格式、模型效果评价等,包括自监督学习、无监督学 习、半监督学习、深度学习、强化学习等标准。 2. 自然语言处理标准。规范自然语言处理中语言信息提取、 文本处理、语义处理等方面的技术要求和评测方法,包括语法分 析、语义理解、语义表达、机器翻译、自动摘要、自动问答、语 言大模型等标准。 5. 智能语音标准。规范前端处理、语音处理、语音接口、 数据资源等技术要求和评测方法,包括深度合成的鉴伪方法、全 双工交互、语音大模型等标准。 6. 计算机视觉标准。规范图像获取、图像/视频处理、图像 内容分析、三维计算机视觉、计算摄影学、跨媒体融合等技术要 求和评价方法,包括功能、性能、可维护性等标准。 7. 生物特征识别标准。规范生物特征样本处理、生物特征 数据协议、设备或系统等技术要求,包括生物特征数据交换格式、 接口协议等标准。 8. 人机混合增强智能标准。规范多通道、多模式和多维度 的交互途径、模式、方法和技术要求,包括脑机接口、在线知识 演化、动态自适应、动态识别、人机协同感知、人机协同决策与0 码力 | 13 页 | 701.84 KB | 1 年前3
人工智能安全治理框架 1.0不完备、标注人员能力不够、标注错误等问题,不仅会影响模型算法准确度、 可靠性、有效性,还可能导致训练偏差、偏见歧视放大、泛化能力不足或输出 错误。 (d)数据泄露风险。人工智能研发应用过程中,因数据处理不当、非授 权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工 (b)混淆事实、误导用户、绕过鉴权的风险。人工智能系统及输出内容 等未经标识,导致用户难以识别交互对象及生成内容来源是否为人工智能系统, 难以鉴别生成内容的真实性,影响用户判断,导致误解。同时,人工智能生成 图片、音频、视频等高仿真内容,可能绕过现有人脸识别、语音识别等身份认 证机制,导致认证鉴权失效。 (c)不当使用引发信息泄露风险。政府、企业等机构工作人员在业务工 作中不规范、不当使用人工智能服务,向大模型输入内部业务数据、工业信息, 定时间段公众主流意识,进而向用户推送程式化、定制化信息及服务,“信息茧房” 效应进一步加剧。 (b)用于开展认知战的风险。人工智能可被利用于制作传播虚假新闻、- 7 - 人工智能安全治理框架 图像、音频、视频等,宣扬恐怖主义、极端主义、有组织犯罪等内容,干涉他 国内政、社会制度及社会秩序,危害他国主权;通过社交机器人在网络空间抢 占话语权和议程设置权,左右公众价值观和思维认知。 3.2.4 伦理域安全风险0 码力 | 20 页 | 3.79 MB | 1 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单北京航空航天大学 高研院 助理教 授 清华大学新闻学院与人工智能学 院双聘教授 沈阳团队博士后 何静 能做什么? 要怎么做? 效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet 平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。 多模态支持:支持文本和 图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1 高效推理:专注于低延迟和 高吞吐量,适合实时应用。 轻量化设计:模型结构优化, 资源占用少,适合边缘设备 (如医疗、法律)进行优化, 提供高精度结果。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini 小型化设计:轻量级模型, 适合资源有限的环境。 快速响应:优化推理速度, 适合实时交互场景。 通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集0 码力 | 85 页 | 8.31 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利善用DeepSeek的两大关键:提出问题 鉴别答案 DeepSeek是什么? • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。性能对齐OpenAI-o1正 式版。 • DeepSeek-R1在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大 提升了模型推理能力。在数学、代码、自然 多模态交互 任务执行 任务协调 工具调用 格式转换 关系抽取 语言理解 文案写作 代码注释 故事创作 通用问答 专业领域问答 因果推理 知识推理 问答系统 逻辑推理 自然语言处理 文本生成与创作 建议生成 风险评估 辅助决策 概念关联 知识整合 交互能力 情感分析 文本分类 图像理解 跨模态转换 专业建议 任务分解 情感回应 上下文理解 对话能力 ”技术细节不熟。电 脑右下角显示时间:3:05 PM,你手心冒汗,疯狂翻找资料,但文档光标始终停留在标题页…… 场景1:1小时内写完一个1万字的项目书 是否可用DeepSeek(深度求索)辅助处理? 可以,但需分阶段“榨干AI效率”,核心策略:框架复制+模块填充+数据嫁接。 分步解决方案: 第一阶段:5分钟——用AI暴力生成框架(目标:3000字) 场景1:1小时内写完一个1万字的项目书0 码力 | 65 页 | 4.47 MB | 8 月前3
共 13 条
- 1
- 2













