普通人学AI指南FlowGPT 网址:https://flowgpt.com/ Figure 8: FlowGPT 包括各种工具提示词 2.5.2 ChatGPT 指令大全 在作者的公众号(郭震 AI)回复消息:gpt,获取这份 GPT 指令大全。 11 2.5.3 SD 提示词手册 为 Stability Diffusion (SD) 提供的提示词手册,旨在帮助用户更有效地使用该 模型。 2.5 可以简单理解为客户端,实现和大模型的交互。ollama 软件 win 和 mac 都包括,如图 11 所示。 13 Figure 11: Ollama 下载 在这里已经为大家准备好,只需要在我的微信公众号郭震 AI,回复消息: ollama,就能下载到软件。 下载之后打开,直接点击 Next 以及 Install 安装 ollama,安装步骤非常简 单。 3.1.2 步骤 2:安装 Llama 下载 Llama3, 界面,如图 13 所示: Figure 13: Ollama 里下载 Llama3 界面 发第一条消息,” 你是谁,用中文回答”,与 Llama2 相比,Llama3 确实在 回答速度上大幅提升,小于秒级,如图 14 所示: 15 Figure 14: 第一次提问:你是谁,用中文回答 发第二条消息,”Python 代码,冒泡排序,代码 + 解释”,回答响应非常快, 如图 15所示: Figure0 码力 | 42 页 | 8.39 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利p 风险评估: “列出智能物流园区常见的3大技术风险(如AGV系统宕机),每项配100字应对方案。” p 效益测算: “用公式推算:园区建成后3年内降本增效收益,假设人工成本减少30%,分拣错误率下降25%。” 你的操作: • 将AI生成内容插入对应章节,优先保证字数达标。 场景1:1小时内写完一个1万字的项目书 第四阶段:10分钟——用AI优化与格式伪装 p统一话术: “将以 致 的误解和错误。通过DeepSeek的数据分析功能,新员 工可以更深入地理解行业动态和公司运营,做出更明智 的决策。 成本更低: 减少了对培训资源的依赖,新员工可以通过DeepSeek 自主学习,降低培训成本。通过提高工作效率,减少了 人力资源的浪费,降低了整体运营成本。 场景3:日常客户沟通与问题反馈处理 常见问题: 与甲方客户的沟通效率低,信息不对称,导致响应不及时或错误 场景:在 无需手动查阅多个系统,DeepSeek可以帮助你在几秒钟内找到答案。 提供更专业的建议: DeepSeek的数据分析能力可以帮助你理解客户需求,并提供更有针对性的建议。 减少错误: 自动化回答和信息整合功能,减少了人工错误的可能性。 提升客户满意度: 通过快速、准确的响应,客户会感受到你的专业性和效率,从而提升对你的信任和满意度。 场景3:日常客户沟通与问题反馈处理 场景4:项目中急需请假0 码力 | 65 页 | 4.47 MB | 8 月前3
国家人工智能产业综合标准化体系建设指南(2024版)8 等基础设施的技术要求和评估方法,包括基础设施参考架构、计 算能力评估、技术要求、稳定性要求和业务服务接口等标准。 6. 系统软件标准。规范人工智能系统层的软硬件技术要求, 包括软硬件编译器架构和优化方法、人工智能算子库、芯片软件 运行时库及调试工具、人工智能软硬件平台计算性能等标准。 7. 开发框架标准。规范人工智能开发框架相关的技术要求, 包括开发框架的功能要求,与应用系统之间的接口协议、神经网0 码力 | 13 页 | 701.84 KB | 1 年前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单R1、Kimi k1.5均能基于分析结果提供多种可视化图表绘制方案,但都需要依靠运行 Python代码才能完成绘图任务,部分代码会出现错误 Open AI o3mini 能够直接调用DALLE,根据分析结果和任务需求高效绘制各类可视化图 表,部分较为复杂的图表可能出现数据错误或无法生成的情况。 Claude 3.5 sonnet 暂时不能直接绘制出可视图表,需要将绘图 代码复制到本地运行。 Kimi 网络爬虫任务爬取数据结果为空 暂不支持上传数据附件 数据挖掘深度较浅 Kimi k1.5 数据挖掘能力出色 快速读取文件数据,提取网址链接 长文本数据处理能力突出 爬虫数据采集存在代码错误问题 数据分析能力相对较弱 数据应用情况总结 新思路:优势互补,协同应用 Claude+DeepSeek 数据处理的“洗髓易筋” Claude 3.5 Sonnet 在文本提取 durability of the electrode to overcome these problems. 标点符号错误一键修改指令 指令:请你帮我确保以下文字中的标点符号正确无误,如果发现标点符号错误,请将你发现的错误列在一 个两栏的标记表中,将原文放在第一栏,将更正后的文本放在第二栏,请只列出错误,并在最后提供更正 后的文本。 原始文本 修正后文本 ln addition. theleft valve0 码力 | 85 页 | 8.31 MB | 8 月前3
人工智能安全治理框架 1.0,人 工智能易受复杂多变运行环境或恶意干扰、诱导的影响,可能带来性能下降、 决策错误等诸多问题。- 4 - 人工智能安全治理框架 (d)被窃取、篡改的风险。参数、结构、功能等算法核心信息,面临被 逆向攻击窃取、修改,甚至嵌入后门的风险,可导致知识产权被侵犯、商业机 密泄露,推理过程不可信、决策输出错误,甚至运行故障。 (e)输出不可靠风险。生成式人工智能可能产生 “幻觉”,即生成看似合理, “幻觉”,即生成看似合理, 实则不符常理的内容,造成知识偏见与误导。 (f)对抗攻击风险。攻击者通过创建精心设计的对抗样本数据,隐蔽地 误导、影响,以至操纵人工智能模型,使其产生错误的输出,甚至造成运行瘫痪。 3.1.2 数据安全风险 (a)违规收集使用数据风险。人工智能训练数据的获取,以及提供服务 与用户交互过程中,存在未经同意收集、不当使用数据和个人信息的安全风险。 (b)训练数据含不当内容、被 “投毒” 的、偏激的等有害信息内容。训练数据还面临攻击者篡改、注入错误、误导数 据的“投毒”风险,“污染”模型的概率分布,进而造成准确性、可信度下降。 (c)训练数据标注不规范风险。训练数据标注过程中,存在因标注规则 不完备、标注人员能力不够、标注错误等问题,不仅会影响模型算法准确度、 可靠性、有效性,还可能导致训练偏差、偏见歧视放大、泛化能力不足或输出 错误。 (d)数据泄露风险。人工智能研发应用过程中,因数据处理不当、非授0 码力 | 20 页 | 3.79 MB | 1 月前3
DeepSeek从入门到精通(20250204)考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界 设计实验性提示语,推动AI能力的进化 伦理意识 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界 设计实验性提示语,推动AI能力的进化 伦理意识 确度 外部信息 整合能力 逻辑推理和 抽象能力 典型错误表现 数据误用 有数据 低 高 高 中 误用已有数据,回答 部分不符或细节错误 语境误解 有数据 高 低 高 中 对问题的意图理解错 误,回答偏离主题 信息缺失 无数据 中 高 低 中 未能正确获取或整合 外部信息 推理错误 部分数据 高 高 中 低 逻辑推理中存在漏洞 或错误假设 无中生有 无数据 低 中 低 低 在无数据支持下,生0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界 设计实验性提示语,推动AI能力的进化 伦理意识 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界 设计实验性提示语,推动AI能力的进化 伦理意识 确度 外部信息 整合能力 逻辑推理和 抽象能力 典型错误表现 数据误用 有数据 低 高 高 中 误用已有数据,回答 部分不符或细节错误 语境误解 有数据 高 低 高 中 对问题的意图理解错 误,回答偏离主题 信息缺失 无数据 中 高 低 中 未能正确获取或整合 外部信息 推理错误 部分数据 高 高 中 低 逻辑推理中存在漏洞 或错误假设 无中生有 无数据 低 中 低 低 在无数据支持下,生0 码力 | 103 页 | 5.40 MB | 8 月前3
清华大学第二弹:DeepSeek赋能职场输出的代码格式应简洁且易于理解。 工作流程: 询问用户希望绘制哪种类型的图表。 收集详细的流程或架构描述。 根据描述分析并设计图表结构。 生成并输出符合Mermaid语法的代码。 校验代码,确保没有语法错误。 将最终代码提供给用户。 输出格式: Mermaid图表代码。 示例: graph TD; A[开始] --> B[做事情]; B --> C[结束]; 如何使用DeepSeek制作可视化图表?0 码力 | 35 页 | 9.78 MB | 8 月前3
共 8 条
- 1













