积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部中文(简体)(8)中文(简体)(2)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 普通人学AI指南

    . . . . . 27 5.2 docker 下载 MaxKB . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 docker 配置 MaxKB . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.4 打开 MaxKB 网页 . . . . . . . . . . . . . . . . . . . . 32 5.5 构建第一个私人知识库 . . . . . . . . . . . . . . . . . . . . . . . . 34 5.6 MaxKB 配置本地 llama3 . . . . . . . . . . . . . . . . . . . . . . 37 5.7 创建知识库应用 . . . . . . . . . . . . . . . 14 Figure 12: Ollama 里下载 Llama3 界面 以上就已经安装完毕,到现在大模型已经在本地部署完成。 3.1.3 使用 Llama3 打开一个终端窗口,再次输入 ollama run llama3,自动就会启动,进入会话 界面,如图 13 所示: Figure 13: Ollama 里下载 Llama3 界面 发第一条消息,” 你是谁,用中文回答”,与 Llama2 相比,Llama3
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    参考其他文章:在“发现”栏,可参考其他学者生成的文章及聊天示例。 整体来看,元知AI综述工具提供了一键式的自动化流程,只需导入数据,即 可自动生成高质量且规范的文献综述,适合快速高效的研究需求。 用户体验对比:可操作性  界面直观:平台设计简洁、直观,使用户能够 方便、快捷地进行文献数据的导入、分析和综 述生成,操作路径清晰,交互体验流畅高效。  模块分区:将功能模块与信息展示分区设计布 局,用户可以轻松找到所需功能,提高了操作 研究者更为友好,能够适应综述撰写的国内外 研究需求,同时定制化设置满足用户在个性化 需求下的使用。 元知AI综述工具  界面直观:平台设计简洁、直观, 使用户能够快捷地进行文献数据 的检索、选取和综述生成,操作 路径清晰,交互体验流畅高效。  语言支持:支持英文和中文内容 生成。 PubScholar平台  界面直观:平台设计简洁、直观, 使用户能够快捷地进行文献数据 的检索、选取和综述生成,操作 路径清晰,交互体验流畅高效。 路径清晰,交互体验流畅高效。  语言支持:支持英文和中文内容 生成。 知网研学平台  界面友好:操作界面简洁明了,用户容易上 手,非技术背景用户也能快速学会使用该工 具进行文献综述的生成。  灵活定制:支持使用本地部署的语言模型, 为有特定需求的用户提供了更多灵活性。  实时演示:提供实时演示demo,方便用户了 解和体验工具的功能。  语言支持:仅支持英文输入和英文内容生成。
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    DeepSeek 三个比较实际的好处: • 本教程接入的是 DeepSeek 推理模型 R1,开源免费,性能强劲 • 本教程搭建方法 零成本,不需花一分钱。 • 为了照顾到大部分读者,推荐的搭建方法已将电脑配置要求降 到最低,普通电脑也能飞速运行。 1.2 DeepSeek 本地部署三个步骤 一共只需要三步,就能做到 DeepSeek 在本地运行并与它对话。 第一步,使用的是 ollama 管理各种不同大模型,ollama 三步就可以直接使用和它对话了。在 cmd(Windows 电脑) 或 terminal(苹果 电脑) 执行命令:ollama run deepseek-r1:1.5b,很快就能进入对话界面,如 下图4所示: 图 4: Ollama 软件启动 deepseek-r1 界面 1.3 DeepSeek 本地运行使用演示 基于上面步骤搭建完成后,接下来提问 DeepSeek 一个问题:请帮我分析 Python 编程如何从零开始学习
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    废钢槽编号识别 • 皮带胶结头异常检测 • 皮带跑偏检测 • 烧结皮带跑偏检测 • 皮带托辊异常检测 • 分析监测烧结工序物料 成分 • 烧结皮带智能监测 • 烧结设备运行工况检测 • 料场生产计划智能配置 • 烧结矿成分预测 • 烧结矿质量预测 • 烧结烟气 S02 排放在 线预测与控制 • 构建能源消耗预测 • 智能故障诊断 • 挡板位移检测 • 皮带划痕、 撕裂、 跑偏检测预警 • 1球团皮带智能监测 企业要躬身入局,以自身业务驱动,打造专有智能体 63政企、创业者必读 智能体在企业应用的七层能力 与大模型直接聊天,输入简单提示词,无Agent能力 具备简单GUI交互界面,可进行一些设置 用内部提示词进行角色设定 具备GUI界面的多个步骤的工具软件 L2 L1 L0 可执行复杂的规划、推理、分解、预测流程的工作流 与企业业务流程、组织、系统打通 L3 L5 L4 多个Agent的相互协作
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 保数据来源清晰、途径合规。建立完善的数据安全管理制度,确保数据安全性 和质量,以及合规使用,防范数据泄露、流失、扩散等风险,人工智能产品终 止下线时妥善处理用户数据。 (c)研发者应确保模型算法训练环境的安全性,包括网络安全配置和数 据加密措施等。 (d)研发者应评估模型算法潜在偏见,加强训练数据内容和质量的抽查 检测,设计有效、可靠的对齐算法,确保价值观风险、伦理风险等可控。 (e)研发者应结合目标市场适用法律要求和风险管理要求,评估人工智
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    基础设施:大模型训练平台与工具 大模型训练平台与工具根据其性质不同,可分为以下几类: 这些平台提供了从模型开发到部署的综合解决方案,包括计算资源、 数据存储、模型训练和部署服务。它们通常提供易于使用的界面,支 持快速迭代和大规模部署。Amazon SageMaker、Google Cloud AI Platform 和 Microsoft Azure Machine Learning 都是提供端到
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    为技术团队提供完整的本地部署指南,涵盖硬件配置、国产芯⽚适配、量化⽅案、云端替代⽅ 案及完整671B MoE模型的Ollama部署⽅法。 核⼼提示: 个⼈⽤户:不建议部署32B及以上模型,硬件成本极⾼且运维复杂。 企业⽤户:需专业团队⽀持,部署前需评估ROI(投资回报率)。 ⼆、本地部署核⼼配置要求 1. 模型参数与硬件对应表 模型参 数 Windows 配置要求 Mac 配置要求 适⽤场景 1.5B MXN系列⽀持70B模型BF16推理,显存利⽤率提升 30% 等效RTX 3090 海光 DCU 适配V3/R1模型,性能对标NVIDIA A100 等效A100(BF16) 2. 国产硬件推荐配置 模型参数 推荐⽅案 适⽤场景 1.5B 太初T100加速卡 个⼈开发者原型验证 14B 昆仑芯K200集群 企业级复杂任务推理 32B 壁彻算⼒平台+昇腾910B集群 科研计算与多模态处理 DeepSeek-R1-Q4_K_M 404 GB ≥500 GB ⾼性能服务器/云GPU 下载地址: HuggingFace模型库 Unsloth AI官⽅说明 2. 硬件配置建议 硬件类型 推荐配置 性能表现(短⽂本⽣成) 消费级设备 Mac Studio(192GB统⼀内存) 10+ token/秒 ⾼性能服务器 4×RTX 4090(96GB显存+384GB内存) 7-8 token/秒(混合推理)
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    据列表形式 呈现。” 关键技巧: p 数据嫁接:若缺乏具体数据,直接让AI生成合理虚构值(标注“示例”规避风险): p “假设园区占地500亩,日均处理包裹量50万件,请计算自动化分拣设备的配置数量,用表格展示。” p 模板复制:对同类章节(如3.1/3.2/3.3)使用相同指令模板,仅替换关键词。 p 强制格式:要求AI输出带编号小标题、分点、表格的内容,直接粘贴后即显“专业感”。 场景1:1小时内写完一个1万字的项目书 第四阶段:10分钟——用AI优化与格式伪装 p统一话术: “将以下段落改写成政府报告风格,加入‘数字化转型’‘双碳战略’等关键词:{粘贴原文}” p生成图表: 指令:“将上文‘设备配置表’转换成LaTeX格式的三线表。”插入图表后,自动增加方案“厚度”。 p最终润色: “检查以下方案书逻辑漏洞,列出3个可能被客户质疑的点,并给出应对答案。” p关键提醒: ü 保命优先级:
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    策略: 应用示例 �话题选择原则 • 与内容高相关性 • 活跃度适中的话题 • 避免过度竞争的热门话题 �标签使用策略 • 核心话题前置 • 相关话题补充 • 品牌话题植入 话题配置要求: 主话题:[话题名称] 相关话题:2—3个 位置要求: - 主话题在开头 - 相关话题在正文 - 品牌话题在结尾 选择标准: - 话题活跃度[范围] - 竞争度评估 - 相关性判断 设计反直觉表达 传播策略: - 话题标签选择 - 关键意见领袖互动设计 - 评论引导策略 应用示例 �内容节奏 • 发布频率:依据账号定位和粉 丝活跃度设定 • 内容分类:不同类型内容的比 例配置 • 互动时间:明确重点互动的时 间段 请帮我制定微博账号的内容排期 规划: 账号信息: - 定位:[填写账号定位] - 目标受众:[受众属性] - 当前粉丝量:[数量]
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    策略: 应用示例 �话题选择原则 • 与内容高相关性 • 活跃度适中的话题 • 避免过度竞争的热门话题 �标签使用策略 • 核心话题前置 • 相关话题补充 • 品牌话题植入 话题配置要求: 主话题:[话题名称] 相关话题:2—3个 位置要求: - 主话题在开头 - 相关话题在正文 - 品牌话题在结尾 选择标准: - 话题活跃度[范围] - 竞争度评估 - 相关性判断 设计反直觉表达 传播策略: - 话题标签选择 - 关键意见领袖互动设计 - 评论引导策略 应用示例 �内容节奏 • 发布频率:依据账号定位和粉 丝活跃度设定 • 内容分类:不同类型内容的比 例配置 • 互动时间:明确重点互动的时 间段 请帮我制定微博账号的内容排期 规划: 账号信息: - 定位:[填写账号定位] - 目标受众:[受众属性] - 当前粉丝量:[数量]
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
共 10 条
  • 1
前往
页
相关搜索词
普通通人普通人AI指南清华大学DeepSeekDeepResearch科研图解10PDF周鸿祎清华演讲我们带来创业机会360202502人工智能人工智能安全治理框架1.0开源中国2023模型LLM技术报告DeepseekR1本地部署完全手册华大大学如何抓住红利入门精通20250204
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩