积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部中文(简体)(10)中文(简体)(2)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 人工智能安全治理框架 1.0

    全国网络安全标准化技术委员会 2024年9月 人工智能 安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 ……………………………… 15 目 录- 1 - 人工智能安全治理框架 人工智能是人类发展新领域,给世界带来巨大机遇,也带来各类风险挑战。 落实《全球人工智能治理倡议》,遵循“以人为本、智能向善”的发展方向,为 推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。 1. 人工智能安全治理原则 秉持共同、综合 包容审慎、确保安全。鼓励发展创新,对人工智能研发及应用采取 包容态度。严守安全底线,对危害国家安全、社会公共利益、公众合法权益的 风险及时采取措施。 人工智能安全治理框架 (V1.0)- 2 - 人工智能安全治理框架 1.2 风险导向、敏捷治理。密切跟踪人工智能研发及应用趋势,从人工 智能技术自身、人工智能应用两方面分析梳理安全风险,提出针对性防范应对 措施。关注安全风险发展变化,
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    实体经济深度融合,全面赋能新型工业化,深刻改变工业生 产模式和经济发展形态,将对加快建设制造强国、网络强国 和数字中国发挥重要的支撑作用。人工智能产业链包括基础 层、框架层、模型层、应用层等 4 个部分。其中,基础层主 要包括算力、算法和数据,框架层主要是指用于模型开发的 深度学习框架和工具,模型层主要是指大模型等技术和产 品,应用层主要是指人工智能技术在行业场景的应用。近年 来,我国人工智能产业在技术创新、产品创造和行业应用等 (一)人工智能标准体系结构 人工智能标准体系结构包括基础共性、基础支撑、关键 技术、智能产品与服务、赋能新型工业化、行业应用、安全 /治理等 7 个部分,如图 1 所示。其中,基础共性标准是人 工智能的基础性、框架性、总体性标准。基础支撑标准主要 规范数据、算力、算法等技术要求,为人工智能产业发展夯 实技术底座。关键技术标准主要规范人工智能文本、语音、 图像,以及人机混合增强智能、智能体、跨媒体智能、具身 图 1 人工智能标准体系结构图 (二)人工智能标准体系框架 人工智能标准体系框架主要由基础共性、基础支撑、关 键技术、智能产品与服务、赋能新型工业化、行业应用、安 全/治理等 7 个部分组成,如图 2 所示。 5 图 2 人工智能标准体系框架图 6 四、重点方向 (一)基础共性标准 基础共性标准主要包括人工智能术语、参考架构、测试评估、 管理、可持续等标准。 1. 术语标准。规范人工智能相关技术、应用的概念定义,
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    大模型框架、微调 (Fine Tuning)  大模型训练平台与工具 基础设施 LLM Agent  备案上线的中国大模型  知名大模型  知名大模型应用 大模型 算力 工具和平台  LLMOps  大模型聚合平台  开发工具 AI 编程  插件、IDE、终端  代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 gitbook/assets/ml_system.svg 4 / 32 LLM 基础设施 01 03 02 04 向量数据库/数据库向量支持 为大模型提供高效的存储和检索能力 大模型框架及微调 (Fine Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以 vector-database/) 7 / 32 LLM 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必要的工具和库,使开发者能够更容易地处理大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。 微调(Fine Tuning)是在大模型框架基础上进行的一个 关键步骤。在模型经过初步的大规模预训练后,微调是
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    。 舆论分析这个概念在最前沿科技或理论中的潜在应用,列出十个充满想象力和震撼性,前所未有的应用。 如果要量化研究审美智能概念,请提出一个合理的,有效的,各指标不重叠的,你自己能提取数据的指数体系框架,不少于三十 个指数。 请大家研究任何问题,先用这四个提示词进行提问。一是跨学科融合,二是深层次原理,三是概念前沿应用,四是如何量化分析。 任何学术概念。 里面会有些冗余信息,可以删除回复中 语言逻辑清晰,条理分明, 各部分之间过渡自然,逻辑 连贯。在研究现状部分,按 照不同研究领域和主题进行 分类,逻辑性强 报告整体呈现出总分总的逻 辑架构,语言描述清晰,避 免冗长,使用简短的句子表 达复杂的信息 报告整体架构严谨,以引言、 技术原理、应用现状、技术 挑战、未来展望等部分进行 层层递进。语言中多使用中 性描述,客观呈现研究进展 与问题 语言逻辑严谨,条理清晰,各部分 研究现状部分围绕研究主题 进一步细分为多个研究层次, 结构合理 内容结构完整,格式较一般 综述结构较为标准,在中文 文献分析上具有优势 在写作前,系统会先生成详细的写 作大纲,为文章的结构提供清晰的 框架。文本内容结构清晰,包括历 史背景、当前趋势、应用领域、挑 战与局限、未来方向。每个部分都 有详细的子标题,结构合理,层次 分明 PS:使用感受会因个体差异而有不同,仅作参考 生成综述对比:完整性与全面性
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    费……通过该报告为相关企业管理 者提供……策略支撑 Objective(操作要 求) 字数要求、段落结构、用词风格、 内容要点、输出格式… CO-STAR提示语框架 新加坡 GPT-4 提示工程竞赛冠军提示词框架 "R",代表 "Response", 想要的回应类型。 一份详细的研究 报告?一个表格? Markdown格式? "C"代表 “Context(上 下文)” 相关的 背景信息,比如 不需要给示例 • 不需要做太多解释 • …… 另一种路径:DeepSeek R1 作为智能体 ü 角色 ü 功能 ü 技能 ü 约束 ü 工作流程 ü 输出格式 "全维度智能体提示框架" (Comprehensive Agent Prompting Framework, CAP Framework) 核心层: 1.身份定义 (Identity) •角色属性 •专业背景 如何使用DeepSeek制作可视化图表? 如何使用DeepSeek制作可视化图表? 角色: Mermaid图表代码生成器 功能: 根据用户提供的流程或架构描述,自动生成符合Mermaid语法的图表代码。 技能: 熟悉Mermaid的图表类型和语法,能高效将流程转化为代码。 理解流程分析、架构设计及结构化展示等领域知识。 约束: 代码必须符合Mermaid语法规范。 流程和结构表达需准确清晰。 流程图需要有二级、三级等多层级。
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    + 数据/信息 + 分析 方法 触发因果链推导与假设验 证 表层总结或分类 3. 创造性需求 需生成新颖内容(文本/ 设计/方案) 主题 + 风格/约束 + 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 成的内容。 ▪ 挑战预设思维模式:通过打破任务的常规设定,促使AI生成具有挑战性和创新性的内容。 灵活运用任务开放性:给AI自由发挥的空间 创新设计策略: ▪ 设定基本框架,留出探索余地:提示语应提供一个结构化的框架,包含具体的生成目标,但不应过度限制表 达方式或细节内容,给AI足够的空间进行创造。 ▪ 多维度任务引导:通过引导AI从多个角度看待问题,激发其对生成内容的多样化思考。 AI缺陷:臆造之辞 从期望结果 开始 倒推提示语 结构 灵活调整提 示语细节 矛盾思维法:利用对立促进创新 引入对立概 念 利用矛盾性促进创新 提出冲突性任务要求 融合批判性思维与创新推理 • 质疑既有框架 • 创新推理 多方论证与批判结合, 增强生成内容的全面性 涌现思维模型:利用集体智慧的提示语设计 提示语链的概念与特征 提示语链是用于引导AI生成内容的连续性提示语序列。通过将复
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    + 数据/信息 + 分析 方法 触发因果链推导与假设验 证 表层总结或分类 3. 创造性需求 需生成新颖内容(文本/ 设计/方案) 主题 + 风格/约束 + 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 成的内容。 ▪ 挑战预设思维模式:通过打破任务的常规设定,促使AI生成具有挑战性和创新性的内容。 灵活运用任务开放性:给AI自由发挥的空间 创新设计策略: ▪ 设定基本框架,留出探索余地:提示语应提供一个结构化的框架,包含具体的生成目标,但不应过度限制表 达方式或细节内容,给AI足够的空间进行创造。 ▪ 多维度任务引导:通过引导AI从多个角度看待问题,激发其对生成内容的多样化思考。 AI缺陷:臆造之辞 从期望结果 开始 倒推提示语 结构 灵活调整提 示语细节 矛盾思维法:利用对立促进创新 引入对立概 念 利用矛盾性促进创新 提出冲突性任务要求 融合批判性思维与创新推理 • 质疑既有框架 • 创新推理 多方论证与批判结合, 增强生成内容的全面性 涌现思维模型:利用集体智慧的提示语设计 提示语链的概念与特征 提示语链是用于引导AI生成内容的连续性提示语序列。通过将复
    0 码力 | 103 页 | 5.40 MB | 9 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    . . . . . 5 2.1 LLM 基础概念 . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Transformer 基础架构 . . . . . . . . . . . . . . . . . . . . . . 6 2.3 LLM 基本训练方法 . . . . . . . . . . . . . . . . . . 就是正式回答,如下图6所示: 图 6: deepseek-r1 回复之正式回答部分 2 DeepSeek 零基础必知 为了更深入理解 DeepSeek-R1,首先需要掌握 LLM 的基础知识,包括其工 作原理、架构、训练方法。 近年来,人工智能(AI)技术的快速发展催生了大型语言模型((Large Language Model, LLM))的兴起。LLM 在自然语言处理(NLP)领域 发挥着越来越重要的 billion,意思是十亿,7b 就是 70 亿,8b 就 是 80 亿,70 亿、80 亿是指大模型的神经元参数(权重参数 weight+bias)的 总量。目前大模型都是基于 Transformer 架构,并且是很多层的 Transformer 结构,最后还有全连接层等,所有参数加起来 70 亿,80 亿,还有的上千亿。 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震 AI,欢迎关注获取更多原创教程。资
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    · 思维导图 React图表 · 折线图 · 柱状图 · 饼图 · 散点图 · 雷达图 · 组合图表 SVG矢量图 · 基础图形 · 图标 · 简单插图 · 流程图 · 组织架构图 常规绘图 DeepSeek的深度思考过程独树一帜 《香料三重奏》茄椒肠卷配酸奶薄荷酱 ??? 灵感地图:巴尔干半岛香料 × 地中海清新感 × 日式天妇罗手 法 ??? 结构解构: 1.青椒薄片 留在标题页…… 场景1:1小时内写完一个1万字的项目书 是否可用DeepSeek(深度求索)辅助处理? 可以,但需分阶段“榨干AI效率”,核心策略:框架复制+模块填充+数据嫁接。 分步解决方案: 第一阶段:5分钟——用AI暴力生成框架(目标:3000字) 场景1:1小时内写完一个1万字的项目书 第二阶段:20分钟——用AI批量填充模块(目标:6000字) 针对每个小节单独提问,例如: 操作:向DeepSeek输入:“我要请假,但项目很紧急,领导可能不满,如何沟通?” p AI辅助: • 分析你的顾虑(如“领导可能认为我不负责”),提供理性视角(如“家庭突发情况≠工作态度问题”)。 • 建议沟通框架:紧急情况说明+短期解决方案+责任承诺。例如: “张总,我家里老人突发中风住院(附病历),需要请假3天。我已将项目A的测试环节交接给小刘(附交接文 档),每天早晚会同步进度。周四返岗后加班追赶,确保不影响上线。”
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 普通人学AI指南

    工具,其中很多都是开源! 2.1 问答 2.1.1 ChatGPT ChatGPT 是一个由 OpenAI 开发的大型语言模型,它基于 GPT(Generative Pre-trained Transformer)架构。这种模型通过分析大量的文本数据来学习语 言结构和信息,使其能够生成连贯的文本、回答问题、撰写文章、进行对话等。 6 Figure 3: AI 问答工具 ChatGPT 经过特别训练,可以理解和生成人类语言,从而在多种应用场景中提 型,更方便!更舒心!关键搭建简单,顺利的话,三五分钟搞定。后面完全免费 畅享使用大模型! Figure 20: 使用开源 LobeChat 搭建美观的大模型前端界面 19 4.1 LobeChat 开源框架,经过我的调研,发现 LobeChat 是目前最优化、最美观和炫酷的前 端界面,适配各个大模型,支持文字、语音、图片的多模态交互。 4.2 步骤一安装 docker 4.2.1 了解 docker 一致性:确保应用在开发、测试和生产环境中具有一致的运行环境。 3. 可移植性:容器可以在任何支持 Docker 的系统上运行,实现跨平台的可 移植性。 4. 易于扩展:Docker 可以方便地扩展并支持微服务架构的部署。 基本概念: 1. 容器(Container):轻量级、独立的可执行软件包,包含了运行所需的代 码、运行时、系统工具、系统库和设置。 2. 镜像(Image):用于创建容器的只读模板。一个镜像可以包含完整的操作
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
人工智能人工智能安全治理框架1.0国家产业综合标准标准化体系建设指南2024开源中国2023模型LLM技术报告清华大学DeepSeekDeepResearch科研清华华大大学第二赋能职场入门精通20250204图解10PDF普通通人普通人如何抓住红利AI
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩