国家人工智能产业综合标准化体系建设指南(2024版)1 国家人工智能产业综合标准化体系建设指南 (2024版) 为深入贯彻落实党中央、国务院关于加快发展人工智能 的部署要求,贯彻落实《国家标准化发展纲要》《全球人工 智能治理倡议》,进一步加强人工智能标准化工作系统谋划, 加快构建满足人工智能产业高质量发展和“人工智能+”高水 平赋能需求的标准体系,夯实标准对推动技术进步、促进企 业发展、引领产业升级、保障产业安全的支撑作用,更好推 完善人工智能产业标准体系。 二、总体要求 以习近平新时代中国特色社会主义思想为指导,全面贯 彻党的二十大和二十届二中全会精神,认真落实中央经济工 作会议和全国新型工业化推进大会部署要求,完整、准确、 全面贯彻新发展理念,统筹高质量发展和高水平安全,加快 赋能新型工业化,以抢抓人工智能产业发展先机为目标,完 善人工智能标准工作顶层设计,强化全产业链标准工作协 同,统筹推进标准的研究、制定、实施和国际化,为推动我 国人工智能产业高质量发展提供坚实的技术支撑。 到 2026 年,标准与产业科技创新的联动水平持续提升, 新制定国家标准和行业标准 50 项以上,引领人工智能产业 高质量发展的标准体系加快形成。开展标准宣贯和实施推广 的企业超过 1000 家,标准服务企业创新发展的成效更加凸 显。参与制定国际标准 20 项以上,促进人工智能产业全球 化发展。 坚持创新驱动。优化产业科技创新与标准化联动机制, 加快人工智能领域关键共性技术研究,推动先进适用的科技0 码力 | 13 页 | 701.84 KB | 1 年前3
 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单沈阳团队博士后 何静 能做什么? 要怎么做? 效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 高频交易数据,识别市场趋势和交易模式,为 交易者提供实时决策支持。 • 数据报告自动化生成:基于o3mini自动 生成格式化的数据报告,包括图表、表格和文 字说明,帮助管理者快速理解分析结果。 • 数据接口标准化:根据标准格式输出数据, 利用o3mini方便不同系统和平台之间的数据 共享,提升跨机构协作效率。 • 情感分析与数据解读:利用o3mini结合 情感分析,对数据进行深入解读,帮助市场调 研等领域理解消费者情感,优化产品和策略。 用户在不同科研需求下得到充分支持。  增强版绘图功能:增强版具备绘图功能,可通过可视化 图示(如文献关键词共现图)直观展示综述内容,帮助 用户更好理解和呈现研究成果。  无数据检索:以现有真实数据库作为支撑,通过关键词 检索,自动搜集相关文献并生成综述报告,目前只支持 英文检索。  低重复率:结合现有查重机制与AI技术,在内容生成阶 段引入重复检测与优化策略,从源头上降低重复率风险, 所0 码力 | 85 页 | 8.31 MB | 8 月前3
 DeepSeek从入门到精通(20250204)主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 如何使用DeepSeek? 两种伦理观的差异” 一次性提问复杂逻辑 如何向AI表达需求 需求类型 特点 需求表达公式 推理模型适配策略 通用模型适配策略 1. 决策需求 需权衡选项、评估风险、 选择最优解 目标 + 选项 + 评估标准 要求逻辑推演和量化分析 直接建议,依赖模型经验归纳 2. 分析需求 需深度理解数据/信息、 发现模式或因果关系 问题 + 数据/信息 + 分析 方法 触发因果链推导与假设验 证 表层总结或分类 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 开发提示语策略,应对复杂场景 表1-3-2提示语设计进阶技能子项 核心技能0 码力 | 104 页 | 5.37 MB | 8 月前3
 清华大学 DeepSeek 从入门到精通主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 如何使用DeepSeek? 两种伦理观的差异” 一次性提问复杂逻辑 如何向AI表达需求 需求类型 特点 需求表达公式 推理模型适配策略 通用模型适配策略 1. 决策需求 需权衡选项、评估风险、 选择最优解 目标 + 选项 + 评估标准 要求逻辑推演和量化分析 直接建议,依赖模型经验归纳 2. 分析需求 需深度理解数据/信息、 发现模式或因果关系 问题 + 数据/信息 + 分析 方法 触发因果链推导与假设验 证 表层总结或分类 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 开发提示语策略,应对复杂场景 表1-3-2提示语设计进阶技能子项 核心技能0 码力 | 103 页 | 5.40 MB | 8 月前3
 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502eek上,不用重复发明轮子  公开蒸馏方法,帮助其他模型提升能力,实现了模型制造模型,犹如工业母机  小模型可部署在企业内电脑或一体机上,使用成本降低,形成分布式推理网络  技术门槛降低, 可标准化、SaaS化部署,下载就能用 DeepSeek颠覆式创新——成本暴跌 35政企、创业者必读 惠及全球人民,科技平权,技术平民化  运营商、云服务可免费用,降低云服务成本  大型企业可使 成本:不需要投入千万、上亿资金,少量资金投入就可以 能力:不需要等待下一代AGI面面俱到的能力 响应:响应速度更快,用户体验更好 部署:可以私有化部署,保障政府企业数据安全 训练:不需要从头训练,只需要专业知识库或者微调就可以 人才:大模型训练复杂程度降低,对人才要求也降低 工具:已经有全套工具 走专业化大模型 之路,大模型落 地门槛大幅降低 从原子弹变成 「茶叶蛋」 52政企、创业者必读 基于DeepSeek是打造专业大模型、 带钢卷取温度高精度预报 • 带钢跑偏预测分析 • 掉顶头异常识别 • 热轧管材表面质检 • 钢管识别跟踪 • 铸管外表面缺陷自动检测 • 铸管内壁缺陷自动检测 • 轧钢含油污泥油-水-固三相比例及成分分析 • 坯料库行车智能调度 • (棒材)多维度轧件堆拉关系分析 • 轧钢动态调度算法 • 产品质量在线控制无损检测 • 无缝钢管芯棒表面质检 • 无缝钢管制品芯棒插偏检测 • 冷轧带材精轧机架间钢带异常识别 • 冷轧带材机架间板形异常识别0 码力 | 76 页 | 5.02 MB | 6 月前3
 人工智能安全治理框架 1.0全国网络安全标准化技术委员会 2024年9月 人工智能 安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 中,因数据处理不当、非授 权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 识产权。 (c) 对训练数据进行严格筛选,确保不包含核生化导武器等高危领域敏 感数据。 (d) 训练数据中如包含敏感个人信息和重要数据,应加强数据安全管理, 符合数据安全和个人信息保护相关标准规范。 (e) 使用真实、准确、客观、多样且来源合法的训练数据,及时过滤失 效、错误、偏见数据。 (f) 向境外提供人工智能服务,应符合数据跨境管理规定。向境外提供 人工智能模型算法,应符合出口管制要求。0 码力 | 20 页 | 3.79 MB | 1 月前3
 开源中国 2023 大模型(LLM)技术报告生成、文本摘要、翻译等任务中展现了强大的通用性。 本报告从技术人视角出发,将深入探讨 LLM 技术的背景、 基础设施、应用现状,以及相关的工具和平台。 2 / 32 LLM Tech Map  向量数据库  数据库向量支持  大模型框架、微调 (Fine Tuning)  大模型训练平台与工具 基础设施 LLM Agent  备案上线的中国大模型  知名大模型  知名大模型应用 大模型 04 向量数据库/数据库向量支持 为大模型提供高效的存储和检索能力 大模型框架及微调 (Fine Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以 Python 为代表 5 / 32 LLM 基础设施:向量数据库/数据库向量支持 向 向量数据库是专门用于存储和检索向量数据的数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 除了选择专业的向量数据库,对传统数据库添加0 码力 | 32 页 | 13.09 MB | 1 年前3
 清华大学 普通人如何抓住DeepSeek红利“请用‘水管流速’比喻说明隐函数求导中dy/dx的意 义。” Ø 生成记忆口诀: “把隐函数求导步骤编成顺口溜,包含‘遇y先写 dy/dx’等关键词。” 场景2:文科生快速上手编程 加载数据集:使用datasets库加载SQuAD数据集,这个数据 集包含了大量基于2020年之前数据生成的问答对。 提取问题:从数据集中提取问题,并使用set去重。 检查问题数量:确保提取的问题数量至少为10万个。 保存问题: Questions等)来生成问题。可以从多个数据集中组 合问题,以达到10万个的问题数量。 这 些 数 据 集 包 含 大 量 的 问 答 对 , 例 如 使 用 d a t a s e t s 库 (Hugging Face的datasets库)来加载SQuAD数据集 (Stanford Question Answering Dataset),这个数据集 是一个著名的问答数据集,基于维基百科数据生成,并且数 据是2020年之前的。 次数(50次、100次、150次)对生成内容相似性与创新性的影响, 建立了测量AI触及知识循环边界的方式。 AI的内容生成有一定的边界效应 研究将智能体知识循环边界操作化为生成内容的差异值,衡量标准为生成文本的平均相似度与重复率的加权值。 相似度计算 采用余弦相似度算法,将文本转化为词频向量,计算向量点积 与模长乘积的比值,评估文本间的相似性,取值范围为[-1, 1], 值越接近1表示相似性越高。该方法广泛应用于信息检索和自0 码力 | 65 页 | 4.47 MB | 8 月前3
 清华大学第二弹:DeepSeek赋能职场基础模型(V3):通用模型(2024.12),高效便捷,适用于绝大多数任务,“ ”任务 • 深度思考(R1):推理模型,复杂推理和深度分析任务,如数理逻辑推理和编程代码,“ ”任务 • 联网搜索:RAG(检索增强生成),知识库更新至 DeepSeek 两种模型对比 操作规范清晰 且对结果有明确要求 操作路径多元、开放, 且对结果没有明确要求 DeepSeek 两种模型对比(5R) 维度 V3模型 R1模型 Regulation (规范性) 强规范约束 (操作路径明确) 弱规范约束 (操作路径开放) Result (结果导向) 目标确定性高 (结果可预期) 目标开放性高 (结果多样性) Route (路径灵活性) 线性路径 (流程标准化) 网状路径 (多路径探索) Responsiveness (响应模式) 被动适配 (按规则执行) 主动创新 (自主决策) Risk (风险特征) 低风险 (稳定可控) 高风险 (不确定性高)0 码力 | 35 页 | 9.78 MB | 8 月前3
 DeepSeek图解10页PDF完全避免数据上 传至云端,确保敏感信息不被第三方访问。 2. 可定制化与优化。支持微调(Fine-tuning):可以根据特定业务需求对模 型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 3. 离线运行,适用于无网络环境。可在离线环境下运行:适用于无互联网 连接或网络受限的场景。提高系统稳定性:即使云服务宕机,本地大模型依 然可以正常工作,不受外部因素影响。 本教程搭建 DeepSeek Reinforcement Learning from Human Feedback): 强化学习(RLHF)优化过程 • 步骤 1:人类标注者提供高质量回答。 • 步骤 2:模型学习人类评分标准,提高输出质量。 • 步骤 3:强化训练,使得生成的文本更符合人类偏好。 3 DeepSeek-R1 精华图解 3.1 DeepSeek-R1 完整训练过程 DeepSeek-R1 主要亮点0 码力 | 11 页 | 2.64 MB | 8 月前3
共 13 条
- 1
 - 2
 













