清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5 垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini 小型化设计:轻量级模型, 适合资源有限的环境。 快速响应:优化推理速度, 高频交易数据,识别市场趋势和交易模式,为 交易者提供实时决策支持。 • 数据报告自动化生成:基于o3mini自动 生成格式化的数据报告,包括图表、表格和文 字说明,帮助管理者快速理解分析结果。 • 数据接口标准化:根据标准格式输出数据, 利用o3mini方便不同系统和平台之间的数据 共享,提升跨机构协作效率。 • 情感分析与数据解读:利用o3mini结合 情感分析,对数据进行深入解读,帮助市场调0 码力 | 85 页 | 8.31 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502逻辑推理 语言翻译 文本创作 自动驾驶 具身智能 1 2 4 5 知识问答 代码编程 文本生成 多轮对话 图像生成 视频生成 音频生成 A I 数字人 生物制药 新材料研究 脑机接口 基础科学 能源自由 宇宙探索 生命科学 科学 能力 6 AI Fo r Science 知识管理( 内部知识管理、 外部情报分析、 大数据分析、 工作流知识) 专家经验模型( 专业模型训练) 专业模型训练) 业务流程自动化( A g e n t框架) 组织协同( 工作流) 人机交互 赋能个人和 企业员工 生产力提升 多模态 能力 3 图片理解和处理 视频理解和处理 音频理解和处理 非结构化文档处理 47政企、创业者必读 DeepSeek能力很强大 个人使用绰绰有余 但要在政府、企业应用需要和场景结合 大模型要藏在产品后面 客户要的不是电动机,是「刮胡刀」「吹风机」 知识库打造是DeepSeek更懂企业的基础 知识自动汇集,不流失 多模态数据处理和理解 非结构化文档处理和理解 搜索,辅助内部办公和外部客户服务 为业务大模型RAG做准备 内部知识管理 • 把企业内部的碎片化知识, 把专 家头脑中的经验转化为显性知识 管理起来, 如员工邮件、 文档文 件、 聊天记录、 工作记录等 工作流知识管理 1 外部情报分析 • 抓取外部情报, 例如行业报告、0 码力 | 76 页 | 5.02 MB | 5 月前3
国家人工智能产业综合标准化体系建设指南(2024版)基础数据服务标准。规范人工智能研发、测试、应用等 过程中涉及数据服务的要求,包括数据采集、数据标注、数据治 理、数据质量等标准。 2. 智能芯片标准。规范智能芯片相关的通用技术要求,包 括智能芯片架构、指令集、统一编程接口及相关测试要求、芯片 数据格式和协议等标准。 3. 智能传感器标准。规范单模态、多模态新型传感器的接 口协议、性能评定、试验方法等技术要求,包括智能传感器的架 构、指令、数据格式、信息提取方法、信息融合方法、功能集成 、计 算能力评估、技术要求、稳定性要求和业务服务接口等标准。 6. 系统软件标准。规范人工智能系统层的软硬件技术要求, 包括软硬件编译器架构和优化方法、人工智能算子库、芯片软件 运行时库及调试工具、人工智能软硬件平台计算性能等标准。 7. 开发框架标准。规范人工智能开发框架相关的技术要求, 包括开发框架的功能要求,与应用系统之间的接口协议、神经网 络模型表达和压缩等标准。 8. 软 提取、 文本处理、语义处理等方面的技术要求和评测方法,包括语法分 析、语义理解、语义表达、机器翻译、自动摘要、自动问答、语 言大模型等标准。 5. 智能语音标准。规范前端处理、语音处理、语音接口、 数据资源等技术要求和评测方法,包括深度合成的鉴伪方法、全 双工交互、语音大模型等标准。 6. 计算机视觉标准。规范图像获取、图像/视频处理、图像 内容分析、三维计算机视觉、计算摄影学、跨媒体融合等技术要0 码力 | 13 页 | 701.84 KB | 1 年前3
普通人学AI指南上下文窗口大小决定了模型在回答问题或生成文本时可以利用的上下文范 围。窗口越大,模型就能处理越长的上下文,对理解长文本内容非常重要。 较大的窗口允许模型处理更长的文本片段,从而提高在长文本任务中的表 现,如长篇对话、文档生成和分析等。 1.4.2 单位 B 和 T 在 AI 大模型中,常用的两个单位是 B 和 T。 B(十亿,Billion):在英文里是 Billion 的缩写,表示十亿。对于 AI 大模型 来说,B 27: ollama 部署权限解决方法 26 5 零代码本地搭建个人知识库 5.1 本地知识库优势 部署本地知识库,可以借助大模型能力,自动检索我们的工作学习文档,实现 对文档内容的实时搜索与问答。 因为大模型、知识库和文档全部运行在本地,所以公司内的业务数据不会泄 密,个人隐私不会泄密,保证这些同时,让:办公效率直接原地起飞! 搭建完成后,实现的效果如图 28: Figure 28: 39: MaxKB 界面-知识库配置续 因为平时做一些 Python 副业接单,我们做过的副业需求文档、单子交付文 件都传入到这个知识库里面,因为都是在本地构建,放心使用,如图 40所示: Figure 40: MaxKB 界面-知识库配置续 35 这里的知识库系统有两种,一种是通用型,也就是自己的文档本地上传,另 一种是 web 站点,用某些网站作为知识库构建的数据来源。在这里根据我的需 求,应该选择通用型。0 码力 | 42 页 | 8.39 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利剧本或对话设计 l 摘要与改写 长文本摘要(论文 、报告) 文本简化(降低复杂度) 多语言翻译与本地化 l 结构化生成 表格 、列表生成(如日程安排 、 菜谱) 代码注释 、文档撰写 文本生成 文本生成 03 02 01 语义分析 • 语义解析 • 情感分析(评论、反馈) • 意图识别(客服对话、用户查 询) • 实体提取(人名、地点、事件) 知识推理 流园区项目方案书,客户临时提 前会议!”你大脑一片空白——手头只有零散的会议记录、几份过时的模板,且对“智能物流”技术细节不熟。电 脑右下角显示时间:3:05 PM,你手心冒汗,疯狂翻找资料,但文档光标始终停留在标题页…… 场景1:1小时内写完一个1万字的项目书 是否可用DeepSeek(深度求索)辅助处理? 可以,但需分阶段“榨干AI效率”,核心策略:框架复制+模块填充+数据嫁接。 分步解决方案: ”插入图表后,自动增加方案“厚度”。 p最终润色: “检查以下方案书逻辑漏洞,列出3个可能被客户质疑的点,并给出应对答案。” p关键提醒: ü 保命优先级:先堆字数再优化,前30分钟专注“把文档撑到10000字”。 ü 虚构数据标注:所有AI生成的数据加“(示例)”后缀,避免背锅。 ü 格式障眼法:多用表格、图表、编号列表,视觉上掩盖文字密度不足。标题字体放大、段落间距调宽,快速“膨胀”页数。0 码力 | 65 页 | 4.47 MB | 8 月前3
人工智能安全治理框架 1.0(d)数据泄露风险。人工智能研发应用过程中,因数据处理不当、非授 权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 以防范。 4.1 针对人工智能内生安全风险 4.1.1 模型算法安全风险应对 (a)不断提高人工智能可解释性、可预测性,为人工智能系统内部构造、- 8 - 人工智能安全治理框架 推理逻辑、技术接口、输出结果提供明确说明,正确反映人工智能系统产生结 果的过程。 (b)在设计、研发、部署、维护过程中建立并实施安全开发规范,尽可 能消除模型算法存在的安全缺陷、歧视性倾向,提高鲁棒性。 4.1 智能学科同步发展,依托学校、科研机构等加强人工智能安全设计、开发、治 理人才的培养,支持培养人工智能安全前沿基础领域顶尖人才,壮大无人驾驶、- 12 - 人工智能安全治理框架 智能医疗、类脑智能、脑机接口等领域安全人才队伍。 5.9 建立健全人工智能安全宣传教育、行业自律、社会监督机制。 面向政府、企业、社会公用事业单位加强人工智能安全规范应用的教育培训。 加强人工智能安全风险及防范应对知识的宣传,全面提高全社会人工智能安全0 码力 | 20 页 | 3.79 MB | 1 月前3
DeepSeek从入门到精通(20250204)、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 社交媒体内容(如推文、帖子) 剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 社交媒体内容(如推文、帖子) 剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图0 码力 | 103 页 | 5.40 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告快速完成从模型到应用的跨越,如 、 等。 : 大模型聚合平台主要用于整合和管理多个大型机器学习模型,在聚合平台之上,衍生出 MaaS(Model-as-a- Service,大模型即服务)的服务模式——通过提供统一的接口和框架,以更高效地部署、运行和优化这些模型, 。 :其它开发相关的 LLM 工具,如云原生构建多模态AI应用的工具 Jina,嵌入式数据库 txtai 等。 25 / 32 LLM 的工具、平台和资源0 码力 | 32 页 | 13.09 MB | 1 年前3
共 9 条
- 1













