积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部中文(简体)(9)中文(简体)(2)英语(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TVM工具组

    绝赞招聘中 TVM CAFFE 前端 2019·11·16绝赞招聘中 TVM 在平头哥 • 工具链产品 平头哥芯片平台发布的配套软件中, TVM 是工具链产品的重要组成部分: 负责将预训练好的 caffe 或者 tensorflow 的模型,转换到 LLVM IR,最后生成可以在无剑 SoC 平台上 执行的二进制。绝赞招聘中 为何添加 caffe 前端? 客户需求 评估 评估阶段:客户用于评估芯片的网络,caffe 模型占很大比重。 竞品已支持 caffe 前端 当前各大芯片厂商的部署工具大多数都支持,支持 caffe 前端有利于提高竞争力。 开源社区 存量的开源 caffe 网络模型众多,TVM 直接支持 caffe 让大家更方便尝试 caffe 资源。绝赞招聘中 当前进度 无 caffe 依赖 from_caffe 直接导入 caffe 模型文件,不需要预先安装 flatten / normalize / crop / proposal / roipooling / permute / priorbox绝赞招聘中 未来 命令行工具 将 caffe 模型转换的功能,通过一组命令行工具提供,命令行工具支持 windows / linux 平台。 支持更多 caffe op / net 随着客户需求和社区发展,提供更多的 caffe 分支变种的 op / net
    0 码力 | 6 页 | 326.80 KB | 6 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    文体转换 个性化推荐 翻译与转换 多语言翻译 异常检测 多源信息融合 知识与推理 知识图谱构建 流程优化 数据可视化 数据分析 趋势分析 多模态交互 任务执行 任务协调 工具调用 格式转换 关系抽取 语言理解 文案写作 代码注释 故事创作 通用问答 专业领域问答 因果推理 知识推理 问答系统 逻辑推理 自然语言处理 文本生成与创作 建议生成 场景1:职场妈妈的晨间战役(日常琐事管理) 优先级排序(幼儿园事务>会议准备>生活采购) 生成最优动线:地图标注幼儿园/干洗店/超市与公司的位置关系 即时服务对接: ✓ 调用社区跑腿API下单手工材料配送 ✓ 接入干洗店智能柜系统预约取件码 ✓ 生鲜平台比价后自动补货牛奶 ③ 会议准备: 自动提取上周销售数据生成可视化图表框架 调取历史报告模板进行语义重组 ④ 风险预警: 灶台计时器同步手机震动提醒 情景还原:7:15分,被幼儿园家长群消息惊醒,发现今天轮到自己带班级手工材料。同时想起丈夫出差前嘱咐的干洗店取 衣,冰箱牛奶已空需采购,下午3点部门汇报会需准备PPT,而此刻灶台上烧着的水即将沸腾。 p 第一步先问AI:这些事情我是否可能全部完成 p 第二步再问AI:如果能完成,哪些事情要优先 做,先后顺序是什么? p 第三步继续问:是否有高效的工具或者办法我 可以使用? p 第四部最后问:这个过程中有任何风险吗?如
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地  能够调用各种工具,具有行动能力  调用企业专业知识,更懂企业  将日常重复性业务流程形成Playbook,实现流程自动化  通过目标拆解,多次调用大模型以及专家模型协同,形成 慢思考能力 传统软件是辅助人的工具,Agent是能够自主工作的数字员工,是新的生产力政企、创业者必读 22 DeepSeek出现之前的十大预判 建立强大生态,成为全球人工智能根技术,无推广情况下各国 政府、企业、云厂商纷纷接入,获得全球最大影响力  改变中美竞争格局:美国是闭源封闭垄断思路,中国领导开源 文化,加速中国领先地位  中国人民使用的AI工具先进性已超过美国,普及率超过美国, 使用AI人口超过美国总人口,且直接用上最先进的DeepSeek-R1 DeepSeek颠覆式创新——开源 33政企、创业者必读 新时代下的集中力量办大事 响应:响应速度更快,用户体验更好 部署:可以私有化部署,保障政府企业数据安全 训练:不需要从头训练,只需要专业知识库或者微调就可以 人才:大模型训练复杂程度降低,对人才要求也降低 工具:已经有全套工具 走专业化大模型 之路,大模型落 地门槛大幅降低 从原子弹变成 「茶叶蛋」 52政企、创业者必读 基于DeepSeek是打造专业大模型、 垂直大模型、场景大模型的最佳选择 D
    0 码力 | 76 页 | 5.02 MB | 6 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    基础设施、应用现状,以及相关的工具和平台。 2 / 32 LLM Tech Map  向量数据库  数据库向量支持  大模型框架、微调 (Fine Tuning)  大模型训练平台与工具 基础设施 LLM Agent  备案上线的中国大模型  知名大模型  知名大模型应用 大模型 算力 工具和平台  LLMOps  大模型聚合平台  开发工具 AI 编程  插件、IDE、终端 插件、IDE、终端  代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 力的提升,研究者们开始设计更大规模的神经网络,以提高对语言复杂性的理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 向量数据库/数据库向量支持 为大模型提供高效的存储和检索能力 大模型框架及微调 (Fine Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以 Python 为代表 5 / 32 LLM 基础设施:向量数据库/数据库向量支持 向量数据库是专门用于存储和检索向量数据的数据库,它可以为
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 普通人学AI指南

    . . . . . . . . . . 6 1.4.2 单位 B 和 T . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 AI 工具梳理 6 2.1 问答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 ChatGPT . . . . . . . . 8 2.2.6 Midjourney . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 AI 视频工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Sora (OpenAI 公司) . . . . . . . . . . . . . . . 9 2.3.4 腾讯智影 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.5 度加创作工具 . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 2.3.6 Spike Studio . . . . . . . . . . . .
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    金融风险预测与管理:开发金融风险分析 工具,收集并分析市场数据,预测风险并为金 融机构提供管理建议。 • 智能文学创作辅助:为作家提供创作灵感 和文本构思,生成符合中文文学传统的故事情 节和诗句,助力突破创作瓶颈。 • 智能广告创意生成:根据产品特点和目标 受众自动生成创意广告文案和宣传语,提高广 告创作效率。 • 中小企业AI定制化服务:为中小企业提 供定制化的AI解决方案,如智能客服、营销 和办公工具,提升企业竞争力。 的低成本特性,创建开源AI教育平台,提供 免费课程和实验资源,促进AI教育普及。 • 智能编程教育助手:为编程学生提供实 时编程指导,自动生成代码示例,帮助解决 编程难题。 • 自动化代码审查工具:自动审查代码, 发现潜在问题并提供优化建议,提升开发效 率与代码质量。 新思路:Open AI o3mini的数据应用 推 理 响 应 速 度 快 写 作 情 感 表 达 能 力 格 中-英、英-中互译指令 指令:我想让你充当一名科研类的英汉翻译,我会向你提供一种语言的一些段落,你的任务是将这些段落准确地、学术性 地翻译成另一种语言。翻译后不要重复原文提供的段落。您应使用人工智能工具(如自然语言处理)以及有关有效写作技巧 的修辞知识和经验进行回复。我会给你如下段落,请告诉我是用什么语言写的,然后翻译。我希望你能以标记表的形式给出 输出结果,其中第一列是原文,第二列是翻译后的句子,每行只给出一个句子
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推 结构类元素用于定义生成内容的组织形式和呈现方式, 决定了AI输出的结构、格式和风格。 控制类元素用于管理和引导AI的生成过程,确保输出 符合预期并能够进行必要的调整,是实现高级提示语 工程的重要工具。 提示语的DNA:解构强大提示语的基本元素 提示语元素组合矩阵 提示语元素协同效应理论的核心观点包括: ▪ 互补增强:某些元素组合可以互相弥补不足,产生1+1>2的效果。 ▪ 级联激活: 请设计一个互动数据展示方案,使读者可以与数据进行互动,并详细描述设计 步骤。 5. 请将不同媒体形式的内容进行联动展示,例如将文字内容与图像和数据可视化 结合起来。 6. 请选用合适的数据可视化工具,并详细描述其使用方法,生成可视化内容。 7. 请将具体案例与数据分析相结合,生成一份包含案例分析的多模态报告。 类别 优势 挑战 结构化思维 引导AI按照预设逻辑进行创作 设计合理的逻辑结构需要经验和技巧
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推 结构类元素用于定义生成内容的组织形式和呈现方式, 决定了AI输出的结构、格式和风格。 控制类元素用于管理和引导AI的生成过程,确保输出 符合预期并能够进行必要的调整,是实现高级提示语 工程的重要工具。 提示语的DNA:解构强大提示语的基本元素 提示语元素组合矩阵 提示语元素协同效应理论的核心观点包括: ▪ 互补增强:某些元素组合可以互相弥补不足,产生1+1>2的效果。 ▪ 级联激活: 请设计一个互动数据展示方案,使读者可以与数据进行互动,并详细描述设计 步骤。 5. 请将不同媒体形式的内容进行联动展示,例如将文字内容与图像和数据可视化 结合起来。 6. 请选用合适的数据可视化工具,并详细描述其使用方法,生成可视化内容。 7. 请将具体案例与数据分析相结合,生成一份包含案例分析的多模态报告。 类别 优势 挑战 结构化思维 引导AI按照预设逻辑进行创作 设计合理的逻辑结构需要经验和技巧
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    网络强国 和数字中国发挥重要的支撑作用。人工智能产业链包括基础 层、框架层、模型层、应用层等 4 个部分。其中,基础层主 要包括算力、算法和数据,框架层主要是指用于模型开发的 深度学习框架和工具,模型层主要是指大模型等技术和产 品,应用层主要是指人工智能技术在行业场景的应用。近年 来,我国人工智能产业在技术创新、产品创造和行业应用等 方面实现快速发展,形成庞大市场规模。伴随以大模型为代 计 算能力评估、技术要求、稳定性要求和业务服务接口等标准。 6. 系统软件标准。规范人工智能系统层的软硬件技术要求, 包括软硬件编译器架构和优化方法、人工智能算子库、芯片软件 运行时库及调试工具、人工智能软硬件平台计算性能等标准。 7. 开发框架标准。规范人工智能开发框架相关的技术要求, 包括开发框架的功能要求,与应用系统之间的接口协议、神经网 络模型表达和压缩等标准。 8. 软硬 仿真模拟、知识推理、具身导航、群体具身智能等标准。 (四)智能产品与服务标准 智能产品与服务标准主要包括智能机器人、智能运载工具、 智能移动终端、数字人、智能服务等标准。 1. 智能机器人标准。规范人工智能在机器人领域应用的技 术要求,包括机器人智能认知、智能决策等标准。 2. 智能运载工具标准。规范智能运载工具感知、识别与预 判、协同与博弈、决策与控制、评价等技术要求,包括环境融合 感知、智能识别预判、智能决策控制、多模式测试评价等标准。
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
  • pdf文档 人工智能安全治理框架 1.0

    理不当、非授 权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国家利用技术垄断和出口管制等单边强制措施制造发展壁垒,恶意阻断 全球人工智能供应链,带来突出的芯片、软件、工具断供风险。 3.2 人工智能应用安全风险 3.2.1 网络域安全风险 (a)信息内容安全风险。人工智能生成或合成内容,易引发虚假信息传播、 歧视偏见、隐私泄露、侵权等问题,威胁公民生命财产安全、国家安全、意识 等问题,将对用户人身生命财产安全、经济社会安全稳定等造成安全威胁。 (b)用于违法犯罪活动的风险。人工智能可能被利用于涉恐、涉暴、涉赌、 涉毒等传统违法犯罪活动,包括传授违法犯罪技巧、隐匿违法犯罪行为、制作 违法犯罪工具等。 (c)两用物项和技术滥用风险。因不当使用或滥用人工智能两用物项和 技术,对国家安全、经济安全、公共卫生安全等带来严重风险。包括极大降低 非专家设计、合成、获取、使用核生化导武器的门槛;设计网络武器,通过自
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
TVM工具清华华大大学清华大学普通通人普通人如何抓住DeepSeek红利周鸿祎演讲我们带来创业机会360202502开源中国2023模型LLM技术报告AI指南DeepResearch科研入门精通20250204国家人工智能人工智能产业综合标准标准化体系建设2024安全治理框架1.0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩