人工智能安全治理框架 1.0全国网络安全标准化技术委员会 2024年9月 人工智能 安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 针对人工智能内生安全风险 ………………………… 7 4.2 针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 社会公众安全应用指引 ……………………………… 15 目 录- 1 - 人工智能安全治理框架 人工智能是人类发展新领域,给世界带来巨大机遇,也带来各类风险挑战。 落实《全球人工智能治理倡议》,遵循“以人为本、智能向善”的发展方向,为 推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。 10 码力 | 20 页 | 3.79 MB | 1 月前3
DeepSeek从入门到精通(20250204)模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 设计/方案) 主题 + 风格/约束 + 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 5. 执行需求 需完成具体操作(代码/ 计算/流程) 任务 + 步骤约束 + 输出格 式 自主优化步骤,兼顾效率 ①自建区域仓库(初期投入高,长期成本低) ②与第三方合作(按需付费,灵活性高) 请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" �实战技巧: "以下是某论文结论:'神经网络模型A优于传统方法B'。 请验证: ① 实验数据是否支持该结论; ② 检查对照组设置是否存在偏差; ③ 重新计算p值并判断显著性。" �实战技巧: 分析需求 "分析近三年新能源汽车销量数据(附CSV),说明:0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 设计/方案) 主题 + 风格/约束 + 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 5. 执行需求 需完成具体操作(代码/ 计算/流程) 任务 + 步骤约束 + 输出格 式 自主优化步骤,兼顾效率 ①自建区域仓库(初期投入高,长期成本低) ②与第三方合作(按需付费,灵活性高) 请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" �实战技巧: "以下是某论文结论:'神经网络模型A优于传统方法B'。 请验证: ① 实验数据是否支持该结论; ② 检查对照组设置是否存在偏差; ③ 重新计算p值并判断显著性。" �实战技巧: 分析需求 "分析近三年新能源汽车销量数据(附CSV),说明:0 码力 | 103 页 | 5.40 MB | 8 月前3
国家人工智能产业综合标准化体系建设指南(2024版)业发展、引领产业升级、保障产业安全的支撑作用,更好推 进人工智能赋能新型工业化,特制定本指南。 一、产业发展现状 人工智能是引领新一轮科技革命和产业变革的基础性 和战略性技术,正成为发展新质生产力的重要引擎,加速和 实体经济深度融合,全面赋能新型工业化,深刻改变工业生 产模式和经济发展形态,将对加快建设制造强国、网络强国 和数字中国发挥重要的支撑作用。人工智能产业链包括基础 层、框架层、模型层、应用层等 层、框架层、模型层、应用层等 4 个部分。其中,基础层主 要包括算力、算法和数据,框架层主要是指用于模型开发的 深度学习框架和工具,模型层主要是指大模型等技术和产 品,应用层主要是指人工智能技术在行业场景的应用。近年 来,我国人工智能产业在技术创新、产品创造和行业应用等 方面实现快速发展,形成庞大市场规模。伴随以大模型为代 2 表的新技术加速迭代,人工智能产业呈现出创新技术群体突 破、行业应用融合发展、国际合作深度协同等新特点,亟需 以习近平新时代中国特色社会主义思想为指导,全面贯 彻党的二十大和二十届二中全会精神,认真落实中央经济工 作会议和全国新型工业化推进大会部署要求,完整、准确、 全面贯彻新发展理念,统筹高质量发展和高水平安全,加快 赋能新型工业化,以抢抓人工智能产业发展先机为目标,完 善人工智能标准工作顶层设计,强化全产业链标准工作协 同,统筹推进标准的研究、制定、实施和国际化,为推动我 国人工智能产业高质量发展提供坚实的技术支撑。0 码力 | 13 页 | 701.84 KB | 1 年前3
清华大学 普通人如何抓住DeepSeek红利t v B 4 G 0 G p y 8 U I q e T 9 M 6 Deepseek的能力图谱 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场 景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 决策支持 文体转换 个性化推荐 翻译与转换 多语言翻译 异常检测 留在标题页…… 场景1:1小时内写完一个1万字的项目书 是否可用DeepSeek(深度求索)辅助处理? 可以,但需分阶段“榨干AI效率”,核心策略:框架复制+模块填充+数据嫁接。 分步解决方案: 第一阶段:5分钟——用AI暴力生成框架(目标:3000字) 场景1:1小时内写完一个1万字的项目书 第二阶段:20分钟——用AI批量填充模块(目标:6000字) 针对每个小节单独提问,例如: 专区的技术参数,用数据列表形式 呈现。” 关键技巧: p 数据嫁接:若缺乏具体数据,直接让AI生成合理虚构值(标注“示例”规避风险): p “假设园区占地500亩,日均处理包裹量50万件,请计算自动化分拣设备的配置数量,用表格展示。” p 模板复制:对同类章节(如3.1/3.2/3.3)使用相同指令模板,仅替换关键词。 p 强制格式:要求AI输出带编号小标题、分点、表格的内容,直接粘贴后即显“专业感”。0 码力 | 65 页 | 4.47 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502面对全球大模型产业之争,要打赢「三大战役」 AGI之战 应用场景之战 大模型安全之战 • 探索超越人类的超级人工 智能AGI • 不仅是科技之争,更是国 运之争 • 不发展是最大的不安全, 发挥举国体制优势,打赢 追赶之战 • 大模型带来前所未有安全 挑战 • 外挂式传统安全手段难以 应对 • 应对模型安全新挑战,打 赢未雨绸缪之战 • 大模型是能力而非产品, 结合场景才能发挥价值 推理能力难以泛化,成本高昂 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式 大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」 大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专 除了少数科技巨头,大多数公司都专注于做专业大模型 MoE架构盛行,本质是多个专家模型组成一个大模型 创业公司得到DeepSeek加持,创业者拥有便宜领先的大模型,迎来 机遇,带来“iPhone时刻” 中国变成AI渗透率最高的国家,率先实现AI工业革命 37政企、创业者必读 人人智能 万物智能 数转智改 未来产业 科学研究 安全 应用爆发的六大方向 38政企、创业者必读 DeepSeek的开源和低成本使得个人也能够拥有自有大模型,实现超能力, 成长为超级个体 DeepSeek六大应用方向之一 人人智能:人人都要用AI0 码力 | 76 页 | 5.02 MB | 6 月前3
开源中国 2023 大模型(LLM)技术报告本报告从技术人视角出发,将深入探讨 LLM 技术的背景、 基础设施、应用现状,以及相关的工具和平台。 2 / 32 LLM Tech Map 向量数据库 数据库向量支持 大模型框架、微调 (Fine Tuning) 大模型训练平台与工具 基础设施 LLM Agent 备案上线的中国大模型 知名大模型 知名大模型应用 大模型 算力 工具和平台 LLMOps 编程 插件、IDE、终端 代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 力的提升,研究者们开始设计更大规模的神经网络,以提高对语言复杂性的理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 gitbook/assets/ml_system.svg 4 / 32 LLM 基础设施 01 03 02 04 向量数据库/数据库向量支持 为大模型提供高效的存储和检索能力 大模型框架及微调 (Fine Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以0 码力 | 32 页 | 13.09 MB | 1 年前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单。 舆论分析这个概念在最前沿科技或理论中的潜在应用,列出十个充满想象力和震撼性,前所未有的应用。 如果要量化研究审美智能概念,请提出一个合理的,有效的,各指标不重叠的,你自己能提取数据的指数体系框架,不少于三十 个指数。 请大家研究任何问题,先用这四个提示词进行提问。一是跨学科融合,二是深层次原理,三是概念前沿应用,四是如何量化分析。 任何学术概念。 里面会有些冗余信息,可以删除回复中 研究现状部分围绕研究主题 进一步细分为多个研究层次, 结构合理 内容结构完整,格式较一般 综述结构较为标准,在中文 文献分析上具有优势 在写作前,系统会先生成详细的写 作大纲,为文章的结构提供清晰的 框架。文本内容结构清晰,包括历 史背景、当前趋势、应用领域、挑 战与局限、未来方向。每个部分都 有详细的子标题,结构合理,层次 分明 PS:使用感受会因个体差异而有不同,仅作参考 生成综述对比:完整性与全面性 , 对 模 型 进 行 最 终 的 强 化 学 习 , 以 对 齐 人 类 偏好。 降本提能:架构创新,技术增效 DeepSeek通过架构创新和模型蒸馏技术,在提升模型性能的同时,显著降低计算成本和内存占用。这些技术不仅在 长文本处理、代码生成、数学推理等任务中表现出色,还为大模型的轻量化和实际应用提供了有力支持。 模型蒸馏技术 DeepSeek采用模型蒸馏技术,通过将知识从大型复杂模型0 码力 | 85 页 | 8.31 MB | 8 月前3
清华大学第二弹:DeepSeek赋能职场2022全球人工智能技术创新大赛-商品标题实体识别 一等奖 第十八届中国计算语言学大会-小牛杯中文幽默计算 一等奖 第十届全国社会媒体处理大会-中文隐式情感分析 一等奖 2021全球开放数据应用创新大赛-基于文本挖掘的企业隐患排查质量分析模型 第一名 2021中国计算机学会大数据与计算智能大赛-“千言〞 问题匹配鲁棒性评测 第一名 2021年全国知识图谱与语义计算大会-医疗科普知识答非所问识别 第一名 互联网虛 费……通过该报告为相关企业管理 者提供……策略支撑 Objective(操作要 求) 字数要求、段落结构、用词风格、 内容要点、输出格式… CO-STAR提示语框架 新加坡 GPT-4 提示工程竞赛冠军提示词框架 "R",代表 "Response", 想要的回应类型。 一份详细的研究 报告?一个表格? Markdown格式? "C"代表 “Context(上 下文)” 相关的 背景信息,比如 不需要给示例 • 不需要做太多解释 • …… 另一种路径:DeepSeek R1 作为智能体 ü 角色 ü 功能 ü 技能 ü 约束 ü 工作流程 ü 输出格式 "全维度智能体提示框架" (Comprehensive Agent Prompting Framework, CAP Framework) 核心层: 1.身份定义 (Identity) •角色属性 •专业背景0 码力 | 35 页 | 9.78 MB | 8 月前3
DeepSeek图解10页PDF. 11 1 1 本地部署并运行 DeepSeek 1.1 为什么要在本地部署 DeepSeek 在本地搭建大模型(如 DeepSeek)具有多个重要的优势,比如: 1. 保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上 传至云端,确保敏感信息不被第三方访问。 2. 可定制化与优化。支持微调(Fine-tuning):可以根据特定业务需求对模 型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 表达能力。4. 位置编码 (Positional Encoding):在没有循环结构的情况下,帮助模型理解单词的顺 序信息。 Transformer 结构的优势 1. 高效的并行计算:摒弃循环结构,使计算速度大幅提升。 2. 更好的上下文理解:注意力机制可捕捉长文本中的远程依赖关系。 3. 良好的可扩展性:可适配更大规模模型训练,增强 AI 泛化能力。 教程作者:郭震,工作 8 年目前美国 核心创新 2:通用强化学习 第一阶段 R1-Zero 虽然展现出惊人的推理能力提升,但是也出现了回复时 语言混合,非推理任务回复效果差的问题,为了解决这些问题,DeepSeek 提出通用强化学习训练框架。 如图7所示,通用强化学习(General Reinforcement Learning)基于 SFT- checkpoint,模型进行通用强化学习(RL)训练,优化其在推理任务和其他 教程作者:郭震,工作0 码力 | 11 页 | 2.64 MB | 8 月前3
共 14 条
- 1
- 2













