开源中国 2023 大模型(LLM)技术报告
提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 除了选择专业的向量数据库,对传统数据库添加 “向量支持”也是主流方案。比如 等传 统数据库均已支持向量检索。 6 等硬件。这类工具可以显著提高训练和推理的速度, 使得处理大规模数据集和复杂模型变得可行。NVIDIA CUDA 和 Google Cloud TPU 均是此类工具。 这类工具通常由开源社区支持和维护,提供了灵活、可扩展的工具和 库来构建和训练大型机器学习模型,如 TensorFlow 和 PyTorch 和 Hugging Face Transformers 等。 TensorFlow 架构图 (图源:https://www 大模型应用现状:首批备案上线的中国大模型 8 月 31 日,百度、字节、商汤、中科院旗下 紫东太初、百川智能、智谱华章等 8 家企业 / 机构的大模型产品首批通过《生成式人工智能 服务管理暂行办法》备案,可正式上线面向公 众提供服务。 具体包括:百度(文心一言)、抖音(云雀大 模型)、智谱 AI(GLM 大模型)、中科院 (紫东太初大模型)、百川智能(百川大模 型)、商汤(日日新大模型)、MiniMax0 码力 | 32 页 | 13.09 MB | 1 年前3人工智能安全治理框架 1.0
推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。 1. 人工智能安全治理原则 秉持共同、综合、合作、可持续的安全观,坚持发展和安全并重,以促 进人工智能创新发展为第一要务,以有效防范化解人工智能安全风险为出发点 和落脚点,构建各方共同参与、技管结合、分工协作的治理机制,压实相关主 体安全责任,打 导的影响,可能带来性能下降、 决策错误等诸多问题。- 4 - 人工智能安全治理框架 (d)被窃取、篡改的风险。参数、结构、功能等算法核心信息,面临被 逆向攻击窃取、修改,甚至嵌入后门的风险,可导致知识产权被侵犯、商业机 密泄露,推理过程不可信、决策输出错误,甚至运行故障。 (e)输出不可靠风险。生成式人工智能可能产生 “幻觉”,即生成看似合理, 实则不符常理的内容,造成知识偏见与误导。 形态安全和伦理安全。如果用户输入的提示词存在不良内容,在模型安全防护 机制不完善的情况下,有可能输出违法有害内容。 (b)混淆事实、误导用户、绕过鉴权的风险。人工智能系统及输出内容 等未经标识,导致用户难以识别交互对象及生成内容来源是否为人工智能系统, 难以鉴别生成内容的真实性,影响用户判断,导致误解。同时,人工智能生成 图片、音频、视频等高仿真内容,可能绕过现有人脸识别、语音识别等身份认 证机制,导致认证鉴权失效。0 码力 | 20 页 | 3.79 MB | 29 天前3清华大学 普通人如何抓住DeepSeek红利
目标:在不伤害长辈感情的情况下,妥善处理亲戚的催婚问题,维护家庭和谐,同时保护自己的个人空间和选择。 对话技巧 p 使用“我”语句:如“我感到…”,避免指责。 p 运用幽默:如“现在我还是专心工作,等以后有了 对象再来麻烦您操心!” p 避免冲突:寻找共同点,如“您说得对,婚姻很重 要,我会认真考虑的。” p 提前沟通:与父母提前商量,减少惊讶。 妥善处理策略 p 表达感激,建立沟通基础 示例:微笑着回应,“谢谢您关心,我很感激您的爱 2 通用模型 • 提示语更简洁, 只需明确任务目标和 需求(因其已内化推理逻辑) 。 • 无需逐步指导, 模型自动生成结构化 推理过程(若强行拆解步骤, 反而可 能限制其能力) 。 • 需显式引导推理步骤(如通过CoT提 示) , 否则可能跳过关键逻辑 。 • 依赖提示语补偿能力短板(如要求分 步思考 、提供示例) 。 策略类型 定义与目标 机制,识别智能体生成内容触及边界的临界点,为优化生成内 容提供量化依据。这一框架可扩展至多模态生成系统,并在教 育、科研和创新领域推动知识生成模式从常规化迈向创新化。 多轮交互中,智能体容易触及认知边界,表现为生成内容的固 定化和信息增量的终止。实验显示,高收敛性提示语导致内容 趋于一致,而非收敛性提示语和多样化设计能突破逻辑循环。 结合自适应反馈和递进式提示链,可推动智能体生成新内容, 避免知识循环,拓宽智能体的生成空间,为人机共生系统中的0 码力 | 65 页 | 4.47 MB | 7 月前3清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单
出文本中提取数据为空等。 Kimi k1.5 能够提取所有网址,代码运 行后生成本地文件,但提取 数据结果为空。 结论 Claude 3.5 sonnet 可以提取所有网址,调整后可输出正 确代码,运行代码能生成本地文件, 但提取数据结果为空。 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 文件数据读取 务。 结论 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 数据可视化 基于titanic遇难者数据分析结果绘制可 视化图表 任务 Open AI o3mini的数据可视化能力突出,能够直接高效地生成多种类型可视化图表,准确度高; DeepSeek R1、Kimi k1.5均能基于分析结果提供多种可视化图表绘制方案,但都需要依靠运行 图表绘制方案及对应代码,需采用Python代 码完成绘图任务。大样本会省略数据;小样 本不省略数据。 年龄分布直方图、票价分布箱线图(展示不同船票等级的票价分布) DeepSeek R1 能够结合数据样本和分析结果,提供多种可 视化图表绘制方案,但暂时不能直接绘制出 可视图表,需要将对应的绘图代码复制到本 地运行制作图表。 柱状图(生还者和遇难者的比例、按船舱等级分类的生还情况) 结论 测试结果受到数据样本、测试0 码力 | 85 页 | 8.31 MB | 7 月前3DeepSeek从入门到精通(20250204)
适的模型,实现最佳效果。 提示语策略差异 1 2 推理模型 通用模型 • 提示语更简洁,只需明确任务目标和 需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。 关键原则 3 2 1 模型选择 表1-3-2提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 表1-3-3提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维0 码力 | 104 页 | 5.37 MB | 7 月前3清华大学 DeepSeek 从入门到精通
适的模型,实现最佳效果。 提示语策略差异 1 2 推理模型 通用模型 • 提示语更简洁,只需明确任务目标和 需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。 关键原则 3 2 1 模型选择 表1-3-2提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 表1-3-3提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维0 码力 | 103 页 | 5.40 MB | 8 月前3【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502
Law,改 写AI发展方向 30政企、创业者必读 DeepSeek在用户体验上实现了三件事 更加理解用户需求,降低Prompt要求 直接呈现思维过程,展现像真人一样思考的能力 可实时联网,把搜索能力与推理能力结合 DeepSeek颠覆式创新——用户体验 具备强大推理能力,思维过程更加缜密,智能性提升 用起来更像真人,写作能力更强,想象力更丰富 31政企、创业者必读 进的DeepSeek-R1 DeepSeek颠覆式创新——开源 33政企、创业者必读 新时代下的集中力量办大事 每个企业都可以直接使用DeepSeek,因为开源透明可信任,企业和 政府可做大量私有化部署 一个开源产品获得突破之后,全世界都能分享成果,结束中国百模大 战,节省大量成本 很多公司参与开源,帮助改进产品,很多人基于DS生态开发应用产 品,增加影响力,人人为我,我为人人 成本的急剧降低 DeepSeek可适配国产硬件,促进国产硬件发展 DeepSeek的优化降低对推理硬件的要求,减少推理成本 训练成本降低,堆显卡模式受质疑,探索新思路,算法优化空间大 无需训练自己的基座模型,直接部署在DeepSeek上,不用重复发明轮子 公开蒸馏方法,帮助其他模型提升能力,实现了模型制造模型,犹如工业母机 小模型可部署在企业内电脑或一体机上,使用成本降低,形成分布式推理网络0 码力 | 76 页 | 5.02 MB | 5 月前3DeepSeek图解10页PDF
DeepSeek 在本地搭建大模型(如 DeepSeek)具有多个重要的优势,比如: 1. 保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上 传至云端,确保敏感信息不被第三方访问。 2. 可定制化与优化。支持微调(Fine-tuning):可以根据特定业务需求对模 型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 3. 离线运行,适用于无网络环境。可在离线环境下运行:适用于无互联网 ,帮助模型理解单词的顺 序信息。 Transformer 结构的优势 1. 高效的并行计算:摒弃循环结构,使计算速度大幅提升。 2. 更好的上下文理解:注意力机制可捕捉长文本中的远程依赖关系。 3. 良好的可扩展性:可适配更大规模模型训练,增强 AI 泛化能力。 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震 AI,欢迎关注获取更多原创教程。资 料用心打磨且开源,是为了帮助更多人了解获取0 码力 | 11 页 | 2.64 MB | 7 月前3国家人工智能产业综合标准化体系建设指南(2024版)
全/治理等 7 个部分组成,如图 2 所示。 5 图 2 人工智能标准体系框架图 6 四、重点方向 (一)基础共性标准 基础共性标准主要包括人工智能术语、参考架构、测试评估、 管理、可持续等标准。 1. 术语标准。规范人工智能相关技术、应用的概念定义, 为其它标准的制定和人工智能研究提供参考,包括人工智能相关 术语定义、范畴、实例等标准。 2. 参考架构标准。规范人工智能相关技术、应用及系统的 管理标准。规范人工智能技术、产品、系统、服务等全 生命周期涉及的人员、组织管理要求和评价,包括面向人工智能 组织的管理要求,人工智能管理体系、分类方法、评级流程等标 准。 5. 可持续标准。规范人工智能影响环境的技术框架、方法 和指标,平衡产业发展与环境保护,包括促进生态可持续的人工 智能软件开源基础框架,人工智能系统能效评价,人工智能与资 7 源利用、碳排放、废弃部件处置等标准。 (二)基础支撑标准 基础支撑标0 码力 | 13 页 | 701.84 KB | 1 年前3普通人学AI指南
GPT-3 的能力,功能更加强大和 精确,但为闭源产品。 12 Figure 10: AI 大模型 2.6.3 Gemma 描述:谷歌推出的一款轻量级开源 AI 工具,旨在提高 AI 应用的可访问性和效 率。 2.6.4 Llama3 描述:Meta 推出的最新开源大型语言模型,具有高级自然语言处理能力,适用 于多种 AI 任务。 3 零代码本地部署 AI 后端 首先介绍一种最精简 容器可以在几秒钟内启动,提高了开发和部署的效率。 2. 一致性:确保应用在开发、测试和生产环境中具有一致的运行环境。 3. 可移植性:容器可以在任何支持 Docker 的系统上运行,实现跨平台的可 移植性。 4. 易于扩展:Docker 可以方便地扩展并支持微服务架构的部署。 基本概念: 1. 容器(Container):轻量级、独立的可执行软件包,包含了运行所需的代 码、运行时、系统工具、系统库和设置。0 码力 | 42 页 | 8.39 MB | 7 月前3
共 13 条
- 1
- 2