积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(15)人工智能(15)

语言

全部中文(简体)(11)中文(简体)(2)[zh](1)英语(1)

格式

全部PDF文档 PDF(14)TXT文档 TXT(1)
 
本次搜索耗时 0.029 秒,为您找到相关结果约 15 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • [zh]
  • 英语
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek从入门到精通(20250204)

    知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GP 按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GP 按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    360集团创始人 周鸿祎 3 政企、创业者必读政企、创业者必读 一张图读懂一堂DeepSeek课政企、创业者必读 AI给了一个比互联网更大的机会  互联网是连接平台,人工智能是生产力  互联网是赋能性技术,生产力属性较弱  人工智能既能单兵作战,也能外部赋能 互联网创造了能写140个字的推特和分享照片的Instagram AI能帮助人解决登陆火星、能源自由的问题 5政企、创业者必读 大模 美国预训练堆算力的路线不可持续,有待发现新范式“换道超车”  软件和算法差距并不大,主要差距在工程、硬件等方面 23政企、创业者必读 DeepSeek的出现验证了我们的预判 而DeepSeek的创新更具颠覆性 24政企、创业者必读 DeepSeek是完美的颠覆式创新  技术创新——让过去做不到的事情可以做到  体验创新——让使用起来很难很复杂的东西变得很简单易用  市场推广创新——让过去很难得到的东西可以得到 DeepSeek颠覆式创新——技术创新 27 DeepSeek-R1和GPT-4o不是同一个物种政企、创业者必读 快思考 慢思考 快 慢 人类真正智力表现 的形式 直觉经验型 速度快、准确性低 GPT、DeepSeek-V3擅长的 思考方式 推理能力获得突破的关键是学会了「慢思考」 例:课堂提问 快问快答  长思维链强大的推理能力是真正人类智力的体现  预训练大模型是人记忆和学习的能力,推理模型是对复杂问题
    0 码力 | 76 页 | 5.02 MB | 6 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    普通人如何抓住DeepSeek红利 p Deepseek是什么? p Deepseek能够做什么? ——在工作、学习、生活和社会关系中解决问题 p 如何提问?让AI一次性生成你想要的东西 卷不动了?DeepSeek帮你一键“躺赢”! 学习太难?DeepSeek带你“开挂”逆袭! 生活太累?DeepSeek帮你“减负”到家! 社交障碍?DeepSeek教你“高情商”破局! 在AI时代,知识的获取成本趋近于零,拥有知识不再是核心竞争力。利用提示词创造知识,引领创新、明确 方向,成为社会与个人竞争力的关键。 p 选择中的再创造 面对AI提供的多种解法,人类需具备批判性思维与逻辑判断能力,通过选择最优答案,实现解决方案的创新 性再生。 p 智慧赋能的决策力 提出问题与甄别答案的能力,使人类在信息爆炸与AI辅助的时代,通过决策行为实现价值创造,成为社会发 展的持续动力。 善用DeepSeek的两大关键:提出问题 情感分析(评论、反馈) • 意图识别(客服对话、用户查 询) • 实体提取(人名、地点、事件) 知识推理 • 知识推理 • 逻辑问题解答(数学、常识 推 理 ) • 因果分析(事件关联性) 自然语言理解与分析 文本分类 • 文本分类 • 主题标签生成(如新闻分 类) • 垃圾内容检测 Mermaid图表 · 流程图 · 时序图 · 类图 · 状态图 · 实体关系图
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 2、撰写python脚本; 3、提取并合并网址; 4、提取网址内容; 5、写入文件。 出文本中提取数据为空等。 Kimi k1.5 能够提取所有网址,代码运 行后生成本地文件,但提取 数据结果为空。 结论 Claude 3.5 sonnet 可以提取所有网址,调整后可输出正 确代码,运行代码能生成本地文件, 但提取数据结果为空。 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 文件数据读取
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。 1. 人工智能安全治理原则 秉持共同、综合、合作、可持续的安全观,坚持发展和安全并重,以促 进人工智能创新发展为第一要务,以有效防范化解人工智能安全风险为出发点 和落脚点,构建各方共同参与、技管结合、分工协作的治理机制,压实相关主 体安全责任,打 人工智能安全治理框架 (V1.0)- 2 - 人工智能安全治理框架 1.2 风险导向、敏捷治理。密切跟踪人工智能研发及应用趋势,从人工 智能技术自身、人工智能应用两方面分析梳理安全风险,提出针对性防范应对 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 1.4 开放合作、共治共享。在全球范围推动人工智能安全治理国际合作, 共享最佳实践,提倡建立开放性平台,通过跨学科、跨领域、跨地区、跨国界 的对话和合作,推动形成具有广泛共识的全球人工智能治理体系。 2. 人工智能安全治理框架构成 基于风险管理理念,本框架针对不同类型的人工智能安全风险,从技术、
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    DeepSeek 在本地搭建大模型(如 DeepSeek)具有多个重要的优势,比如: 1. 保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上 传至云端,确保敏感信息不被第三方访问。 2. 可定制化与优化。支持微调(Fine-tuning):可以根据特定业务需求对模 型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 3. 离线运行,适用于无网络环境。可在离线环境下运行:适用于无互联网 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震 AI,欢迎关注获取更多原创教程。资 料用心打磨且开源,是为了帮助更多人了解获取 AI 知识,严禁拿此资料引流、出书、等形式的商业活动 通用性更强。大模型和我们自己基于某个特定数据集(如 ImageNet、20News- Group)训练的模型在本质上存在一些重要区别。主要区别之一,大模型更 加通用,这是因为它们基于大量多样化的数据集进行训练,涵盖了不同领域 了不同领域 和任务的数据。这种广泛的学习使得大模型具备了较强的知识迁移能力和 多任务处理能力,从而展现出“无所不知、无所不晓”的特性。相比之下, 我们基于单一数据集训练的模型通常具有较强的针对性,但其知识范围仅 限于该数据集的领域或问题。因此,这类模型的应用范围较为局限,通常只 能解决特定领域或单一任务的问题。 Scaling Laws 大家可能在很多场合都见到过。它是一个什么法则呢?大
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    理领域,GPT 系列模型在文本生成、问答系统和对话生成 等任务中展现出色的性能。在知识图谱构建、智能助手开发 等方面,LLM 技术也发挥了关键作用。此外,它还在代码 生成、文本摘要、翻译等任务中展现了强大的通用性。 本报告从技术人视角出发,将深入探讨 LLM 技术的背景、 基础设施、应用现状,以及相关的工具和平台。 2 / 32 LLM Tech Map  向量数据库  数据库向量支持  大模型框架、微调  代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 力的提升,研究者们开始设计更大规模的神经网络,以提高对语言复杂性的理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 方法为语言任 LLM 基础设施 01 03 02 04 向量数据库/数据库向量支持 为大模型提供高效的存储和检索能力 大模型框架及微调 (Fine Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以 Python 为代表 5 / 32 LLM
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    平赋能需求的标准体系,夯实标准对推动技术进步、促进企 业发展、引领产业升级、保障产业安全的支撑作用,更好推 进人工智能赋能新型工业化,特制定本指南。 一、产业发展现状 人工智能是引领新一轮科技革命和产业变革的基础性 和战略性技术,正成为发展新质生产力的重要引擎,加速和 实体经济深度融合,全面赋能新型工业化,深刻改变工业生 产模式和经济发展形态,将对加快建设制造强国、网络强国 和数字中国发挥重要的支撑作用。人工智能产业链包括基础 (一)人工智能标准体系结构 人工智能标准体系结构包括基础共性、基础支撑、关键 技术、智能产品与服务、赋能新型工业化、行业应用、安全 /治理等 7 个部分,如图 1 所示。其中,基础共性标准是人 工智能的基础性、框架性、总体性标准。基础支撑标准主要 规范数据、算力、算法等技术要求,为人工智能产业发展夯 实技术底座。关键技术标准主要规范人工智能文本、语音、 图像,以及人机混合增强智能、智能体、跨媒体智能、具身 全/治理等 7 个部分组成,如图 2 所示。 5 图 2 人工智能标准体系框架图 6 四、重点方向 (一)基础共性标准 基础共性标准主要包括人工智能术语、参考架构、测试评估、 管理、可持续等标准。 1. 术语标准。规范人工智能相关技术、应用的概念定义, 为其它标准的制定和人工智能研究提供参考,包括人工智能相关 术语定义、范畴、实例等标准。 2. 参考架构标准。规范人工智能相关技术、应用及系统的
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
  • pdf文档 普通人学AI指南

    得广泛的知识和能力。这些模型通常具有庞大的参数数量,能够处理复杂的任 务,如自然语言理解、图像识别、语音识别等。 闭源大模型包括 OpenAI 的 GPT 系列和 Google 的 BERT。这些模型因其 高效的学习能力和强大的通用性而受到关注。 开源大模型以 Meta 的 Llama 系列,2024 年 4 月,Llama3 发布,包括 8B 和 70B 模型。 图 2,时间线主要根据技术论文的发布日期(例如提交至 arXiv 的日期)来 GPT-3 的能力,功能更加强大和 精确,但为闭源产品。 12 Figure 10: AI 大模型 2.6.3 Gemma 描述:谷歌推出的一款轻量级开源 AI 工具,旨在提高 AI 应用的可访问性和效 率。 2.6.4 Llama3 描述:Meta 推出的最新开源大型语言模型,具有高级自然语言处理能力,适用 于多种 AI 任务。 3 零代码本地部署 AI 后端 首先介绍一种最精简的 速部署并且易于管理应用。 Docker 的优势: 1. 快速部署:Docker 容器可以在几秒钟内启动,提高了开发和部署的效率。 2. 一致性:确保应用在开发、测试和生产环境中具有一致的运行环境。 3. 可移植性:容器可以在任何支持 Docker 的系统上运行,实现跨平台的可 移植性。 4. 易于扩展:Docker 可以方便地扩展并支持微服务架构的部署。 基本概念: 1. 容器(Container):轻
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
DeepSeek入门精通20250204清华华大大学清华大学周鸿祎演讲我们带来创业机会360202502普通通人普通人如何抓住红利DeepResearch科研人工智能人工智能安全治理框架1.0图解10PDF开源中国2023模型LLM技术报告国家产业综合标准标准化体系建设指南2024AI
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩