清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单成数据提取并写入文件“2025春运数据.txt” Open AI o3mini 响应速度快,能够高效提 取所有需求链接,输出完 整可运行python脚本,代 码运行后生成文件,但数 据采集结果为空。 DeepSeek R1 能够提取所有网址并进行 筛选、去重,所撰写代码 运行后完成数据爬虫任务, 所获取数据准确,少量数 据有所遗漏。 提示词 测试结果受到数据样本、测试环境、AI 不全、输出文本中提取数据为空等。 Kimi k1.5 能够提取所有网址,代码运 行后生成本地文件,但提取 数据结果为空。 结论 Claude 3.5 sonnet 可以提取所有网址,调整后可输出正 确代码,运行代码能生成本地文件, 但提取数据结果为空。 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 2、对数据集进行深入分析和数据挖掘 任务 DeepSeek R1 能够准确对数据进行分类,从多个维度进行梳理和分析,借助可视化图表进行数据挖掘,基于分析结 果提供可行建议,但整体数据挖掘深度较浅,缺少对不同类型数据直接关联性的探究。 第一轮对话: 第二轮对话: (基于初步分析结果,选择其中一部分或某个方 向进行深入的数据挖掘) 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因0 码力 | 85 页 | 8.31 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利时间利用率提升40%,晨间压力值降低65%,关键事务完成率100% 情景还原:7:15分,被幼儿园家长群消息惊醒,发现今天轮到自己带班级手工材料。同时想起丈夫出差前嘱咐的干洗店取 衣,冰箱牛奶已空需采购,下午3点部门汇报会需准备PPT,而此刻灶台上烧着的水即将沸腾。 p 第一步先问AI:这些事情我是否可能全部完成 p 第二步再问AI:如果能完成,哪些事情要优先 做,先后顺序是什么? p 需求(因其已内化推理逻辑) 。 • 无需逐步指导, 模型自动生成结构化 推理过程(若强行拆解步骤, 反而可 能限制其能力) 。 • 需显式引导推理步骤(如通过CoT提 示) , 否则可能跳过关键逻辑 。 • 依赖提示语补偿能力短板(如要求分 步思考 、提供示例) 。 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 格式要求 简单任务 、需快速执行 “用Python编写快速排序函 数, 输出需包含注释 。 ” 结果精准高效 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题 、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案 。 ” 激发模型深层推理 需清晰定义需求边界 混合模式 结合需求描述与关键0 码力 | 65 页 | 4.47 MB | 8 月前3
DeepSeek从入门到精通(20250204)需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。 关键原则 3 2 1 模型选择 • 优先根据任务类型而非模型热度选择(如数学任务选推理模型,创意任务选通用 模型)。 提示语设计 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 么”“如何”) 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他 算法。” ✅ 触发模型自解释能力 ❌ 可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型 直接提问,无需分步引导 “证明勾股定理” 冗余拆解(如“先画图,再列公式”) 通用模型 显式要求分步思考,提供示例0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。 关键原则 3 2 1 模型选择 • 优先根据任务类型而非模型热度选择(如数学任务选推理模型,创意任务选通用 模型)。 提示语设计 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 么”“如何”) 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他 算法。” ✅ 触发模型自解释能力 ❌ 可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型 直接提问,无需分步引导 “证明勾股定理” 冗余拆解(如“先画图,再列公式”) 通用模型 显式要求分步思考,提供示例0 码力 | 103 页 | 5.40 MB | 8 月前3
人工智能安全治理框架 1.0推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。 1. 人工智能安全治理原则 秉持共同、综合、合作、可持续的安全观,坚持发展和安全并重,以促 进人工智能创新发展为第一要务,以有效防范化解人工智能安全风险为出发点 和落脚点,构建各方共同参与、技管结合、分工协作的治理机制,压实相关主 体安全责任,打 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 1.4 开放合作、共治共享。在全球范围推动人工智能安全治理国际合作, 共享最佳实践,提倡建立开放性平台,通过跨学科、跨领域、跨地区、跨国界 的对话和合作,推动形成具有广泛共识的全球人工智能治理体系。 2. 人工智能安全治理框架构成 基于风险管理理念,本框架针对不同类型的人工智能安全风险,从技术、 管理两方面提出防范应对措施。同时,目前人工智能研发应用仍在快速发展, 安全风险的表现形式、影响程度、认识感知亦随之变化,防范应对措施也将相 应动态调整更新,需要各方共同对治理框架持续优化完善。0 码力 | 20 页 | 3.79 MB | 1 月前3
清华大学第二弹:DeepSeek赋能职场DeepSeek 两种模型对比(5R) 维度 V3模型 R1模型 Regulation (规范性) 强规范约束 (操作路径明确) 弱规范约束 (操作路径开放) Result (结果导向) 目标确定性高 (结果可预期) 目标开放性高 (结果多样性) Route (路径灵活性) 线性路径 (流程标准化) 网状路径 (多路径探索) Responsiveness (响应模式) 被动适配 (按规则执行) 主动创新 Objective(操作要 求) 字数要求、段落结构、用词风格、 内容要点、输出格式… CO-STAR提示语框架 新加坡 GPT-4 提示工程竞赛冠军提示词框架 "R",代表 "Response", 想要的回应类型。 一份详细的研究 报告?一个表格? Markdown格式? "C"代表 “Context(上 下文)” 相关的 背景信息,比如 你自己或是你希 望它完成的任务 的信息。 "O"代表 “Objective aid语法的图表代码。 技能: 熟悉Mermaid的图表类型和语法,能高效将流程转化为代码。 理解流程分析、架构设计及结构化展示等领域知识。 约束: 代码必须符合Mermaid语法规范。 流程和结构表达需准确清晰。 流程图需要有二级、三级等多层级。 输出的代码格式应简洁且易于理解。 工作流程: 询问用户希望绘制哪种类型的图表。 收集详细的流程或架构描述。 根据描述分析并设计图表结构。0 码力 | 35 页 | 9.78 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告等硬件。这类工具可以显著提高训练和推理的速度, 使得处理大规模数据集和复杂模型变得可行。NVIDIA CUDA 和 Google Cloud TPU 均是此类工具。 这类工具通常由开源社区支持和维护,提供了灵活、可扩展的工具和 库来构建和训练大型机器学习模型,如 TensorFlow 和 PyTorch 和 Hugging Face Transformers 等。 TensorFlow 架构图 (图源:https://www Copilot 16 / 32 大模型应用现状:知名大模型 在全球范围内,已经发布了多款知名大模型,这些大模 型在各个领域都取得了突破性的进展。 处理文本数据的 GPT-4,能同时处理和理解多种类型数 据的多模态模型 DALL-E 3,以及开源大模型的代表 Lllama 2 都在短时间内获得了大量关注和用户,构成了 大模型领域的「第一梯队」。 讯飞星火 17 / 32 大模型应用现状:首批备案上线的中国大模型 大模型应用现状:首批备案上线的中国大模型 8 月 31 日,百度、字节、商汤、中科院旗下 紫东太初、百川智能、智谱华章等 8 家企业 / 机构的大模型产品首批通过《生成式人工智能 服务管理暂行办法》备案,可正式上线面向公 众提供服务。 具体包括:百度(文心一言)、抖音(云雀大 模型)、智谱 AI(GLM 大模型)、中科院 (紫东太初大模型)、百川智能(百川大模 型)、商汤(日日新大模型)、MiniMax (ABAB0 码力 | 32 页 | 13.09 MB | 1 年前3
普通人学AI指南40 3 1 AI 大模型基础 1.1 AIGC AIGC 是指使用人工智能模型生成内容的技术。这些内容可以包括图像、音频、 文本、视频、3D 模型等。具体来说,AIGC 技术可以生成如下类型的内容: • 图像:如照片、原创艺术作品 • 音频:如视频游戏中的配音、音乐 • 文本:如代码、广告文案、小说 • 3D 模型:如角色、场景 目前,AIGC 技术处于早期阶段,最常见的产品形态是基于文本的,通过用 GPT-3 的能力,功能更加强大和 精确,但为闭源产品。 12 Figure 10: AI 大模型 2.6.3 Gemma 描述:谷歌推出的一款轻量级开源 AI 工具,旨在提高 AI 应用的可访问性和效 率。 2.6.4 Llama3 描述:Meta 推出的最新开源大型语言模型,具有高级自然语言处理能力,适用 于多种 AI 任务。 3 零代码本地部署 AI 后端 首先介绍一种最精简 容器可以在几秒钟内启动,提高了开发和部署的效率。 2. 一致性:确保应用在开发、测试和生产环境中具有一致的运行环境。 3. 可移植性:容器可以在任何支持 Docker 的系统上运行,实现跨平台的可 移植性。 4. 易于扩展:Docker 可以方便地扩展并支持微服务架构的部署。 基本概念: 1. 容器(Container):轻量级、独立的可执行软件包,包含了运行所需的代 码、运行时、系统工具、系统库和设置。0 码力 | 42 页 | 8.39 MB | 8 月前3
Deepseek R1 本地部署完全手册DeepSeek-R1-Q4_K_M 404 GB ≥500 GB ⾼性能服务器/云GPU 下载地址: HuggingFace模型库 Unsloth AI官⽅说明 2. 硬件配置建议 硬件类型 推荐配置 性能表现(短⽂本⽣成) 消费级设备 Mac Studio(192GB统⼀内存) 10+ token/秒 ⾼性能服务器 4×RTX 4090(96GB显存+384GB内存) 7-8 token/秒(混合推理) 沐曦GPU:免费API体验 李锡涵博客:完整部署教程 结语 Deepseek R1 的本地化部署需极⾼的硬件投⼊与技术⻔槛,个⼈⽤户务必谨慎,企业⽤户应充 分评估需求与成本。通过国产化适配与云端服务,可显著降低⻛险并提升效率。技术⽆⽌境, 理性规划⽅能降本增效! ⼿册更新与反馈:如有补充或修正,请联系⽂档作者,接⼊细节请阅读详细⽂档硅基流动社 区。 全球企业个⼈渠道附表 1. 秘塔搜索:https://metaso0 码力 | 7 页 | 932.77 KB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502Law,改 写AI发展方向 30政企、创业者必读 DeepSeek在用户体验上实现了三件事 更加理解用户需求,降低Prompt要求 直接呈现思维过程,展现像真人一样思考的能力 可实时联网,把搜索能力与推理能力结合 DeepSeek颠覆式创新——用户体验 具备强大推理能力,思维过程更加缜密,智能性提升 用起来更像真人,写作能力更强,想象力更丰富 31政企、创业者必读 进的DeepSeek-R1 DeepSeek颠覆式创新——开源 33政企、创业者必读 新时代下的集中力量办大事 每个企业都可以直接使用DeepSeek,因为开源透明可信任,企业和 政府可做大量私有化部署 一个开源产品获得突破之后,全世界都能分享成果,结束中国百模大 战,节省大量成本 很多公司参与开源,帮助改进产品,很多人基于DS生态开发应用产 品,增加影响力,人人为我,我为人人 成本的急剧降低 DeepSeek可适配国产硬件,促进国产硬件发展 DeepSeek的优化降低对推理硬件的要求,减少推理成本 训练成本降低,堆显卡模式受质疑,探索新思路,算法优化空间大 无需训练自己的基座模型,直接部署在DeepSeek上,不用重复发明轮子 公开蒸馏方法,帮助其他模型提升能力,实现了模型制造模型,犹如工业母机 小模型可部署在企业内电脑或一体机上,使用成本降低,形成分布式推理网络0 码力 | 76 页 | 5.02 MB | 6 月前3
共 13 条
- 1
- 2













