积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(64)Go(64)

语言

全部中文(简体)(62)英语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(61)其他文档 其他(2)PPT文档 PPT(1)
 
本次搜索耗时 0.068 秒,为您找到相关结果约 64 个.
  • 全部
  • 后端开发
  • Go
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Go性能优化概览-曹春晖

    业务性能优化概览 By Xargin 《Go 语⾔⾼级编程》合著者 Go contributor ⽬ 录 优化的前置知识 01 ⽣产环境的优化 02 Continuous profiling 03 优化的前置知识 第⼀部分 Latency numbers every programmer should know https://colin-scott.github.io/p io/personal_website/research/interactive_latency.html 优化的前置知识 • 要能读得懂基本的调⽤栈 • 了解 Go 语⾔内部原理(runtime,常⽤标准库) • 了解常⻅的⽹络协议(http、pb) https://github.com/bagder/http2-explained https://github.com/bagder/http3-explained ⽤户声明的对象,被放在栈上还是堆上, 是由编译器的 escape analysis 来决定的 ⽅法论 内存使⽤优化 CPU 使⽤优化 阻塞优化 GC 优化 标准库优化 runtime 优化 应⽤层优化 底层优化 • 越靠近应⽤层,优化带来的效果越好 • 涉及到底层优化的,⼤多数情况下还是修改应⽤代码 逻辑优化 ⽣产环境的优化 第⼆部分 ⾸先,是发现问题 API 压测 全链路压测 ⽣产环境被 ⾼峰流量打爆了
    0 码力 | 40 页 | 8.69 MB | 1 年前
    3
  • pdf文档 IPC性能极致优化方案-RPAL落地实践

    IPC性能极致优化方案-RPAL落地实践 谢正尧 字节跳动 研发工程师 目 录 方案诞生的背景 01 全进程地址空间共享与保护 02 用户态进程切换 03 高效的Go Event Poller 04 RPC框架Kitex集成 05 性能收益与业务展望 06 方案诞生的背景 第一部分 方案诞生的背景 几种常见的同机通信场景: 1. 微服务合并部署(亲和性部署、sidecar Call,对比同进程 Function Call 仅增加 200 ns 延迟。 业务真实数据 性能收益与业务展望 业务展望 1. 定制化场景深度优化: 同步 RPAL Call; 请求/响应 Zero Copy; 2. 业务进程与服务网格 IPC 性能优化: 结合用户态协议栈,实现网络 IO 绕过内核 CloudWeGo 是一套由字节跳动基础架构服务框架团队开源的、 可快速构建企业级云原生微服务架构
    0 码力 | 39 页 | 2.98 MB | 1 年前
    3
  • pdf文档 5.cgo 原理解析及优化实践

    cgo 原理解析及优化实践 朱德江 蚂蚁集团 MOSN 核心成员 Golang contributor Envoy Golang extension maintainer 公众号 • 开源爱好者 • 十余年网关研发 • OpenResty 老司机(NGINX + LuaJIT) • MOSN 核心成员 • Envoy Golang extension maintainer • • 玩过 DSL 编译器 • 对 LuaJIT、Go 有一些研究 目 录 背景介绍 01 cgo 工作机制 02 cgo 调度机制 03 CPU 优化 04 GC 优化 05 背景介绍 第一部分 网关发展历史 网关的扩展机制 什么是 MoE 举个例子 为什么需要 MoE Envoy  研发效能  良好的生态,上手门槛低  Wasm?Lua? Golang P,会携带新建的 newg,在一个新的 Go 线程上执行 Go 调 C ① “释放”P 并没有立即执行,需要等 sysmon 来 retake  属于优化;通常 C 很快返回 ② 获取不到 P,也会将 G 放入全局 G 队列 CPU 优化 第四部分 发现过程  needm:获取 extra M,确保 go 需要的信号没有被屏蔽  dropm:释放 extra M,恢复信号 8
    0 码力 | 45 页 | 5.74 MB | 1 年前
    3
  • pdf文档 2.1.1 Golang主动式内存缓存的优化探索之路

    Golang主动式内存缓存的优化探索之路 安晏伯 学而思网校 技术专家 目 录 问题引入 01 难点攻克 02 主动式内存缓存框架 03 总结 04 问题引入 第一部分 为什么能有极致的性能? 01. 如何优化? 解决了哪些技术难题? 主动式内存缓存 如何优化? 极致的性能 除了网络IO,与Redis有什么区别? 复杂的查询怎么办? 02. 传统的Cache很难实现多维度的查询,无法具备像SQL一样的灵活的查询模式 具备像SQL一样的灵活的查询模式  支持多种维度的查询  提供类似SQL的查询模式  支持灵活的信息过滤条件 内存不够用怎么办? 03. 冷热可交换、策略可定制、内存可扩展,多种冷数据淘汰组件,自由组合 存储扩展,冷热数据交换 可自定义冷热数据交换策略 还能提供什么帮助? 04. 降低硬件成本,降低依赖,保证稳定性 同样的性能,需要更少的硬件资源,降低成本 01 核心数据在本地,依赖少,更稳定 核心数据在本地,依赖少,更稳定 02 • 千万级内存对象,GC严重耗时,如何解决? • 复杂的查询场景,内存数据如何高效组织? • 主动式内存缓存,如何保证数据实时性? • 数据太多,内存不够用,如何进行存储扩展? 通过本次分享,可以带来哪些收获? 难点攻克 第二部分 使用内存缓存 数据一致性如何保证? 一致性 01. 缓存如何保证更新,如何与数据库同步 同步、更新  被动方式
    0 码力 | 48 页 | 6.06 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Go版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 10.5 重识搜索算法 . . . 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)
    0 码力 | 383 页 | 18.48 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Golang版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 10.5 重识搜索算法 . . . 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)
    0 码力 | 382 页 | 17.60 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Go 版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 10.5 重识搜索算法 . . . 时间效率:算法运行时间的长短。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)
    0 码力 | 384 页 | 18.49 MB | 9 月前
    3
  • pdf文档 Hello 算法 1.0.0b5 Golang版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样我们才能将各种算法进行对比,从而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述的求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)
    0 码力 | 379 页 | 30.70 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 Golang版

    10.2. 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 10.3. 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10.4. 重识搜索算法 . . 空间效率,即算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。掌握评估算法效率的方法则至关重要,因为 只有了解评价标准,我们才能进行算法之间的对比分析,从而指导算法设计与优化过程。 2.1.2. 效率评估方法 实际测试 假设我们现在有算法 A 和算法 B,它们都能解决同一问题,现在需要对比这两个算法的效率。我们最直接的 方法就是找一台计算机,运行这两个算法,并监 log10 ? ,因 此空间复杂度为 ?(log10 ?) = ?(log ?) 。 2.3.4. 权衡时间与空间 理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复 杂度和空间复杂度通常是非常困难的。 降低时间复杂度通常需要以提升空间复杂度为代价,反之亦然。我们将牺牲内存空间来提升算法运行速度的 思路称为“以空间换时间”;反之,则称为“以时间换空间”。
    0 码力 | 347 页 | 27.40 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Golang版

    如果从数据结构与算法的角度看,大大小小的「积木」就是数据结构,而「拼装说明书」上的一系列步骤就是 算法。 例二:查字典。在字典中,每个汉字都有一个对应的拼音,而字典是按照拼音的英文字母表顺序排列的。假设 需要在字典中查询任意一个拼音首字母为 ? 的字,一般我们会这样做: 1. 打开字典大致一半页数的位置,查看此页的首字母是什么(假设为 ? ); 2. 由于在英文字母表中 ? 在 ? 的后面,因此应排除字典前半部分,查找范围仅剩后半部分; 时间效率,即算法的运行速度的快慢。 ‧ 空间效率,即算法占用的内存空间大小。 数据结构与算法追求“运行速度快、占用内存少”,而如何去评价算法效率则是非常重要的问题,因为只有知 道如何评价算法,才能去做算法之间的对比分析,以及优化算法设计。 2.1.2. 效率评估方法 实际测试 假设我们现在有算法 A 和 算法 B ,都能够解决同一问题,现在需要对比两个算法之间的效率。我们能够想到 的最直接的方式,就是找一台计算机, ,即对应字符串长度为 log10 ? ,因 此空间复杂度为 ?(log10 ?) = ?(log ?) 。 2.4. 权衡时间与空间 理想情况下,我们希望算法的时间复杂度和空间复杂度都能够达到最优,而实际上,同时优化时间复杂度和空 间复杂度是非常困难的。 降低时间复杂度,往往是以提升空间复杂度为代价的,反之亦然。我们把牺牲内存空间来提升算法运行速度的 思路称为「以空间换时间」;反之,称之为「以时间换空间」
    0 码力 | 190 页 | 14.71 MB | 1 年前
    3
共 64 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
前往
页
相关搜索词
Go性能优化概览春晖IPC极致方案RPAL落地实践cgo原理解析2.1Golang主动动式主动式内存缓存探索Hello算法1.11.01.2简体中文简体中文0b50b40b1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩