积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(52)Go(52)

语言

全部中文(简体)(51)中文(繁体)(1)

格式

全部PDF文档 PDF(49)其他文档 其他(2)PPT文档 PPT(1)
 
本次搜索耗时 0.061 秒,为您找到相关结果约 52 个.
  • 全部
  • 后端开发
  • Go
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 1.5 Go 语言构建高并发分布式系统实践

    go语⾔言并发编程实践 以360消息推送系统为例 如何应对的? go语⾔言在基础服务开发领域的优势? 我遭遇了哪些挑战? ⺫⽬目录 具有go特⾊色的运维 在⾼高并发,通信交互复杂,重业务逻辑的分布式系统中, Go语⾔言优势体现在:开发体验好 、⼀一定量级下服务稳定 、性能满⾜足 需要 ⼀一定量级下服务稳定: 50+内部产品,万款开发平台app 线上单机最⾼高160w⻓长连接 (24核 E5-2630 @ 2.30GHz 64G内存 ) qps在2~5w(取决于协议版本,业务逻辑,接⼊入端⺴⽹网络状况) 测试环境,可以通过300w⻓长连接压测(⺴⽹网络,连接稳定,⽆无带宽限制,实际可以更⾼高 ,决定于⼲⼴广播时候业务内存开销的cpu消耗带来的⼼心跳或者业务延时能否接受) 以360消息推送系统为例 ⾼高并发、通信交互复杂 � �/ ����/ ���� Admin���� ���������� �������� ������� ���push������ ������ 消息系统规模架构:重业务逻辑 ⾼高并发、通信交互复杂 Dispatcher Service Room Service Proxy Service Register Service Saver Service
    0 码力 | 39 页 | 5.23 MB | 1 年前
    3
  • pdf文档 1.2 基于 Golang 构建高可扩展的云原生 PaaS 平台

    0 码力 | 40 页 | 8.60 MB | 1 年前
    3
  • pdf文档 2.7 Golang与高性能DSP竞价系统

    Right Reserved 什么是RTB与DSP 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved • ⾼高并发量请求处理(峰值QPS 20万) • 每天上百亿竞价请求 • 每个竞价请求要在100毫秒内响应(包含⺴⽹网络延迟) • 复杂的出价算法与逻辑 DSP竞价系统的挑战 专业DSP解决⽅方案 ReservedAll Right Reserved • 内存占⽤用过⼤大时,可以切分为多个实例,减少单个实例 的内存占⽤用,减少BgSave和重启时Load数据的时间 • ⼀一致性要求不是⾮非常⾼高的业务,可以把⾃自动的BgSave 关闭,在凌晨或者空闲时候⼿手动调⽤用BgSave Redis运维 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved • 数据存在Redis中 • 占⽤用内存⼤大,达到2T内存 • 内存成本⾼高 • Redis没有集群,维护成本⾼高(嗯,当时是还没的) CookieMapping 第⼀一版 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right
    0 码力 | 51 页 | 5.09 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 繁体中文 Go 版

    的方法是找一臺計算機,執行這兩個演算法,並監控記錄它們的執行時間和記憶體佔用情況。這種評估方式 能夠反映真實情況,但也存在較大的侷限性。 一方面,難以排除測試環境的干擾因素。硬體配置會影響演算法的效能表現。比如一個演算法的並行度較高, 那麼它就更適合在多核 CPU 上執行,一個演算法的記憶體操作密集,那麼它在高效能記憶體上的表現就會 更好。也就是說,演算法在不同的機器上的測試結果可能是不一致的。這意味著我們需要在各種機器上進行 複雜度分析為我們提供了一把評估演算法效率的“標尺”,使我們可以衡量執行某個演算法所需的時間和空 間資源,對比不同演算法之間的效率。 複雜度是個數學概念,對於初學者可能比較抽象,學習難度相對較高。從這個角度看,複雜度分析可能不太 適合作為最先介紹的內容。然而,當我們討論某個資料結構或演算法的特點時,難以避免要分析其執行速度 和空間使用情況。 綜上所述,建議你在深入學習資料結構與演算法之 所不同。 表 2‑1 迭代與遞迴特點對比 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 性好 適
    0 码力 | 385 页 | 18.80 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0 Golang版

    “计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < recur() 在运行过程中会同时存在 ? 个未返回的 recur() ,从而占用 ?(?) 的栈帧空间。 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶
    0 码力 | 382 页 | 17.60 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Go版

    “计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < recur() 在运行过程中会同时存在 ? 个未返回的 recur() ,从而占用 ?(?) 的栈帧空间。 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶
    0 码力 | 383 页 | 18.48 MB | 1 年前
    3
  • pdf文档 基于open-falcon的平安云监控

    打造用户自助服务的监控平台 Ø 适应内部的三级网络架构 背景 云管区 公共服务区 可用区 目录 Ø 团队介绍 Ø 背景 Ø 系统定位 Ø argus是什么 Ø 为什么选用Go Ø argus的前身 Ø argus的现状 Ø argus的未来 系统定位 Ø 保证基础监控,提供监控通道 Ø 要求高可用、高可扩展 Ø 分离用户、平台管理员 角色 Ø 建设用户自助平台(看性能、配告警、收告警) Ø 背景 Ø 系统定位 Ø argus是什么 Ø 为什么选用Go Ø argus的前身 Ø argus的现状 Ø argus的未来 为什么选用Go Ø 自带goroutine,容易实现高并发程序 Ø 标准库功能键全 Ø 方便引用第三次库 Ø 为工程化设计的语言 Ø Interface的设计 Ø 自带profile工具 Ø 自带单元测试框架 目录 Ø 团队介绍 Ø 背景 gitlab 问题&目标 Ø 问题 Ø 没有异地容灾 Ø 跨区域上报数据,会产生大量专线流量 Ø 隔离性不好 Ø 目标 Ø 异地容灾、高可用 Ø 节省专线带宽 Ø 支持三级网络架构 Ø 支持按照租户进行隔离 Ø 运维入口统一 argus的架构 可用区 云管区(主备) 公共服务区 云管区(深圳、上海、廊坊) agent gateway proxy transfer meta
    0 码力 | 30 页 | 10.40 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Go 版

    “计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < recur() 在运行过程中会同时存在 ? 个未返回的 recur() ,从而占用 ?(?) 的栈帧空间。 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶
    0 码力 | 384 页 | 18.49 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b5 Golang版

    作的数量的统计”,这样以来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < recur(n int) { if n == 1 { return } recur(n - 1) } 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶
    0 码力 | 379 页 | 30.70 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 Golang版

    我们按照说明书一步步操作,就能组装出精美的积木模型。 1. 初识算法 hello‑algo.com 11 Figure 1‑5. 拼装积木 两者的详细对应关系如下表所示。 数据结构与算法 LEGO 乐高 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得注意的是,数据结构与算法独立于编程语言。正因如此,本书得以提供多种编程语言的实现。 而数据结构是计算机中组织和存储数据的 方式。 1. 初识算法 hello‑algo.com 12 ‧ 数据结构与算法紧密相连。数据结构是算法的基石,而算法则是发挥数据结构作用的舞台。 ‧ 乐高积木对应于数据,积木形状和连接方式代表数据结构,拼装积木的步骤则对应算法。 13 2. 复杂度 2.1. 算法效率评估 2.1.1. 算法评价维度 从总体上看,算法设计追求以下两个层面的目标: 的运行时间的统计”简化为“计算操作的数量的统计”,这样的简化方法大大降低了估算难度。 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很大。同 样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在这些情况下, 我们很难仅凭时间复杂度判断算法效率高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最 有效且常用的方法。 2
    0 码力 | 347 页 | 27.40 MB | 1 年前
    3
共 52 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
前往
页
相关搜索词
1.5Go语言构建并发分布布式系统分布式分布式系统实践1.2基于Golang高可扩展原生PaaS平台2.7高性性能高性能DSP竞价Hello算法繁体中文繁体中文1.01.1openfalcon平安监控简体简体中文0b50b4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩