积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(30)Go(30)

语言

全部中文(简体)(30)

格式

全部PDF文档 PDF(28)其他文档 其他(2)
 
本次搜索耗时 0.094 秒,为您找到相关结果约 30 个.
  • 全部
  • 后端开发
  • Go
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hello 算法 1.0.0b4 Golang版

    和 C 的时间复杂度相同,但实际运行时间差别很大。同 样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在这些情况下, 我们很难仅凭时间复杂度判断算法效率高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最 有效且常用的方法。 2.2.3. 函数渐近上界 设算法的计算操作数量是一个关于输入数据大小 ? 的函数,记为 ?(?) ,则以下算法的操作数量为 复杂度 hello‑algo.com 18 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以被忽略。根据此原则,可以总结出以下计数简化技巧: +n*n(技巧 3) for i := 0; i < 2 * n; i++ { for j := 0; j < n + 1; j++ { fmt.Println(0) } } } 第二步:判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用, 其他项的影响都可以被忽略。 以下表格展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当
    0 码力 | 347 页 | 27.40 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Go版

    和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: func algorithm(n int) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。 。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 2?2 + 7? + 3 ?(?) = ?2 + ? 偷懒统计 (o.O) 2. 第二步:判断渐近上界 时间复杂度由 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用,其他 项的影响都可以忽略。 表 2‑2 展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当
    0 码力 | 383 页 | 18.48 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Golang版

    和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: func algorithm(n int) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。 。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 2?2 + 7? + 3 ?(?) = ?2 + ? 偷懒统计 (o.O) 2. 第二步:判断渐近上界 时间复杂度由 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用,其他 项的影响都可以忽略。 表 2‑2 展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当
    0 码力 | 382 页 | 17.60 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Golang版

    A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 第 2 章 复杂度分析 hello‑algo.com 28 2.3.2 函数渐近上界 给定一个输入大小为 要掌握 推算方法,数学意义就可以逐渐领悟。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以被忽略 。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 2?2 + 7? + 3 ?(?) = ?2 + ? 偷懒统计 (o.O) 2. 第二步:判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用, 其他项的影响都可以被忽略。 表 2‑1 展示了一些例子,其中一些夸张的值是
    0 码力 | 379 页 | 30.70 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Golang版

    需要会推算即可,数学意义可以慢慢领悟。 2.2.4. 推算方法 推算出 ?(?) 后,我们就得到时间复杂度 ?(?(?)) 。那么,如何来确定渐近上界 ?(?) 呢?总体分为两步,首 先「统计操作数量」,然后「判断渐近上界」。 1) 统计操作数量 对着代码,从上到下一行一行地计数即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作 数量 ?(?) 中的各种系数、常数项都可以被 2 * n; i++ { for j := 0; j < n + 1; j++ { fmt.Println(0) } } } 2. 复杂度分析 hello‑algo.com 18 2) 判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将处于主导作用, 其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调 「暴力枚举」和「辅助哈希表」分别对应 空间最优 和 时间最优 的两种解法。本着时间比空间更宝贵的原则,后 者是本题的最佳解法。 方法一:暴力枚举 考虑直接遍历所有所有可能性。通过开启一个两层循环,判断两个整数的和是否为 target ,若是则返回它俩 的索引(即下标)即可。 // === File: leetcode_two_sum.go === /* 方法一:暴力枚举 */ func
    0 码力 | 190 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Go 版

    如果把具体的工作技能比作是武功的“招式”的话,那么基础科目应该更像是“内功”。 我认为学算法(以及其他基础科目)的意义不是在于在工作中从零实现它,而是基于学到的知识,在解决问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: func algorithm(n int) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。
    0 码力 | 384 页 | 18.49 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b2 Golang版

    需要会推算即可,数学意义可以慢慢领悟。 2.2.4. 推算方法 推算出 ?(?) 后,我们就得到时间复杂度 ?(?(?)) 。那么,如何来确定渐近上界 ?(?) 呢?总体分为两步,首 先「统计操作数量」,然后「判断渐近上界」。 1) 统计操作数量 对着代码,从上到下一行一行地计数即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作 数量 ?(?) 中的各种系数、常数项都可以被 2 * n; i++ { for j := 0; j < n + 1; j++ { fmt.Println(0) } } } 2. 复杂度分析 hello‑algo.com 18 2) 判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将处于主导作用, 其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调 「暴力枚举」和「辅助哈希表」分别对应 空间最优 和 时间最优 的两种解法。本着时间比空间更宝贵的原则,后 者是本题的最佳解法。 方法一:暴力枚举 考虑直接遍历所有所有可能性。通过开启一个两层循环,判断两个整数的和是否为 target ,若是则返回它俩 的索引(即下标)即可。 // === File: leetcode_two_sum.go === /* 方法一:暴力枚举 */ func
    0 码力 | 202 页 | 15.73 MB | 1 年前
    3
  • pdf文档 Go Web编程

    量中设置如下信息: export GOROOT=$HOME/go export PATH=$PATH:$GOROOT/bin 如何判断自己的操作系统是32位还是64位? 如何判断自己的操作系统是32位还是64位? 我们接下来的Go安装需要判断操作系统的位数,所以这小节我们先确定自己的系统类型。 Windows系统用户请按Win+R运行cmd,输入systeminfo后回车,稍等片刻,会出现一些系统信息。在“系统类 map,返回map拥有的key的数量 - map的值可以很方便的修改,通过numbers["one"]=11可以很容易的把key为 one的字典值改为11 map的初始化可以通过key:val的方式初始化值,同时map内置有判断是否存在key的方式 通过delete删除map的元素: // 初始化一个字典 rating := map[string]float32 {"C":5, "Go":4.5, "Python":4 流程控制在编程语言中是最伟大的发明了,因为有了它,你可以通过很简单的流程描述来表达很复杂的逻辑。流程控 制包含分三大类:条件判断,循环控制和无条件跳转。 if if if也许是各种编程语言中最常见的了,它的语法概括起来就是:如果满足条件就做某事,否则做另一件事。 Go里面if条件判断语句中不需要括号,如下代码所示 if x > 10 { fmt.Println("x is greater
    0 码力 | 295 页 | 5.91 MB | 1 年前
    3
  • pdf文档 Go 入门指南(The way to Go)

    示例: 函数 Atoi (第 4.7 节): func Atoi(s string) (i int, err error) 返回的形式: return var1, var2 这种多返回值一般用于判断某个函数是否执行成功(true/false)或与其它返回值一同返回错误消息(详见 之后的并行赋值)。 使用 type 关键字可以定义你自己的类型,你可能想要定义一个结构体(第 10 章),但是也可以定义一个已 部变量。 在第 5 章,我们将会学习到像 if 和 for 这些控制结构,而在这些结构中声明的变量的作用域只在相应的代 码块内。一般情况下,局部变量的作用域可以通过代码块(用大括号括起来的部分)判断。 尽管变量的标识符必须是唯一的,但你可以在某个代码块的内层代码块中使用相同名称的变量,则此时外 部的同名变量将会暂时隐藏(结束内部代码块的执行后隐藏的外部同名变量又会出现,而内部同名变量则 是具有快捷性质的运算符,当运算符左边表达式的值已经能够决定整个表达式的 值的时候(&& 左边的值为 false,|| 左边的值为 true),运算符右边的表达式将不会被执行。利用这个性 质,如果你有多个条件判断,应当将计算过程较为复杂的表达式放在运算符的右侧以减少不必要的运算。 利用括号同样可以升级某个表达式的运算优先级。 在格式化输出时,你可以使用 %t 来表示你要输出的值为布尔型。 布尔值(以
    0 码力 | 380 页 | 2.97 MB | 1 年前
    3
  • pdf文档 Go 入门指南(The way to Go)

    SetFinalizer 第11章:接口(interface)与反射(reflection) 11.1 接口是什么 11.2 接口嵌套接口 11.3 类型断言:如何检测和转换接口变量的类型 11.4 类型判断:type-switch 11.5 测试一个值是否实现了某个接口 11.6 使用方法集与接口 11.7 第一个例子:使用 Sorter 接口排序 11.8 第二个例子:读和写 11.9 空接口 函数 Atoi (第 4.7 节): func Atoi(s string) (i int, err error) 返回的形式: 1. return var1, var2 这种多返回值一般用于判断某个函数是否执行成功(true/false)或与其它返回值一同返回错误消息(详见之后的 并行赋值)。 4.2.4 类型 4.2 Go 程序的基本结构和要素 - 62 - 本文档使用 书栈(BookStack 部变量。在第 5 章, 我们将会学习到像 if 和 for 这些控制结构,而在这些结构中声明的变量的作用域只在相应的代码块内。一般情况 下,局部变量的作用域可以通过代码块(用大括号括起来的部分)判断。 尽管变量的标识符必须是唯一的,但你可以在某个代码块的内层代码块中使用相同名称的变量,则此时外部的同名变 量将会暂时隐藏(结束内部代码块的执行后隐藏的外部同名变量又会出现,而内部同名变量则被释放),你任何的操
    0 码力 | 466 页 | 4.44 MB | 1 年前
    3
共 30 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
Hello算法1.00b4Golang1.1Go0b50b11.2简体中文简体中文0b2Web编程入门指南Thewayto
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩