积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(46)Go(46)

语言

全部中文(简体)(45)中文(繁体)(1)

格式

全部PDF文档 PDF(43)其他文档 其他(2)PPT文档 PPT(1)
 
本次搜索耗时 0.077 秒,为您找到相关结果约 46 个.
  • 全部
  • 后端开发
  • Go
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Golang大规模云原生应用管理实践

    效率 云原生-程序员视角 基础设施 K8s 云原生生态(CNCF) 云原生应用 云原生是以容器技术为基础围绕着Kubernetes进行的一场技术标准化演进。通过标准可扩展的调度,网络, 存储,容器运行时接口来提供基础设施;通过标准可扩展的声明式资源和控制器来提供运维能力。两层标 准化推进了细化的社会分工,各领域进一步提升规模化和专业化,全面达到成本,效率,稳定性的优化。 4 6 7 员工进入公司需要验证是一个策略,人脸识别是机制; • 从杭州到上海是策略,坐火车是机制; • 接口是策略,实现是机制; • 声明是策略,过程是机制; • 策略面向外部交互,机制面向内部实现; • 策略追求开放标准,机制追求稳定可复用; • 策略与机制要分离; • 策略与机制随着层次的变化而变化; 应用管理的策略与机制 应用 版本 工作负载 负载均衡 标签 流量 组件 日志 指标 容量 definitionRef: name: scaledobjects.keda.k8s.io 能力定义 • 工作负载 • 运维特征 • 作用域 组件 应用配置 = 组件+运维特征+作用域 简单开放 标准可扩展 可组合 可发现 https://github.com/oam-dev/spec EDAS的平台构建机制-KubeVela https://github.com/oam-dev/kubevela
    0 码力 | 23 页 | 7.70 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Go版

    均时间复杂度为 Θ(?/2) = Θ(?) 。 但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。 在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。 为什么很少看到 Θ 符号? 可能由于 ? 符号过于朗朗上口,因此我们常常使用它来表示平均时间复杂度。但从严格意义上讲,这 种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 ?( 需要表示小数,取值范围应该变小才对。 实际上,这是因为浮点数 float 采用了不同的表示方式。记一个 32 比特长度的二进制数为: ?31?30?29 … ?2?1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 位,对应 ?31 。 ‧ 指数位 E :占 8 位,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 254} (1 + N) =(1 + 23 ∑ ?=1 ?23−?2−?) ⊂ [1, 2 − 2−23] 第 3 章 数据结构 hello‑algo.com 59 图 3‑5 IEEE 754 标准下的 float 的计算示例 观察图 3‑5 ,给定一个示例数据 S = 0 ,E = 124 ,N = 2−2 + 2−3 = 0.375 ,则有: val = (−1)0 × 2124−127
    0 码力 | 383 页 | 18.48 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Golang版

    均时间复杂度为 Θ(?/2) = Θ(?) 。 但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。 在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。 � 为什么很少看到 Θ 符号? 可能由于 ? 符号过于朗朗上口,因此我们常常使用它来表示平均时间复杂度。但从严格意义 上讲,这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 需要表示小数,取值范围应该变小才对。 实际上,这是因为浮点数 float 采用了不同的表示方式。记一个 32 比特长度的二进制数为: ?31?30?29 … ?2?1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 位,对应 ?31 。 ‧ 指数位 E :占 8 位,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 254} (1 + N) =(1 + 23 ∑ ?=1 ?23−?2−?) ⊂ [1, 2 − 2−23] 第 3 章 数据结构 hello‑algo.com 59 图 3‑5 IEEE 754 标准下的 float 的计算示例 观察图 3‑5 ,给定一个示例数据 S = 0 ,E = 124 ,N = 2−2 + 2−3 = 0.375 ,则有: val = (−1)0 × 2124−127
    0 码力 | 382 页 | 17.60 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Go 版

    均时间复杂度为 Θ(?/2) = Θ(?) 。 但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。 在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。 为什么很少看到 Θ 符号? 可能由于 ? 符号过于朗朗上口,因此我们常常使用它来表示平均时间复杂度。但从严格意义上讲,这 种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 ?( 需要表示小数,取值范围应该变小才对。 实际上,这是因为浮点数 float 采用了不同的表示方式。记一个 32 比特长度的二进制数为: ?31?30?29 … ?2?1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 位,对应 ?31 。 ‧ 指数位 E :占 8 位,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 (1 + N) =(1 + 23 ∑ ?=1 ?23−?2−?) ⊂ [1, 2 − 2−23] 第 3 章 数据结构 www.hello‑algo.com 59 图 3‑5 IEEE 754 标准下的 float 的计算示例 观察图 3‑5 ,给定一个示例数据 S = 0 ,E = 124 ,N = 2−2 + 2−3 = 0.375 ,则有: val = (−1)0 × 2124−127
    0 码力 | 384 页 | 18.49 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b4 Golang版

    ‧ 时间效率,即算法运行速度的快慢。 ‧ 空间效率,即算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。掌握评估算法效率的方法则至关重要,因为 只有了解评价标准,我们才能进行算法之间的对比分析,从而指导算法设计与优化过程。 2.1.2. 效率评估方法 实际测试 假设我们现在有算法 A 和算法 B,它们都能解决同一问题,现在需要对比这两个算法的效率。我们最直接的 2) = Θ(?) 。 但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分 布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。 2. 复杂度 hello‑algo.com 28 � 为什么很少看到 Θ 符号? 可能由于 ? 符号过于朗朗上口,我们常常使用它来表示「平均复杂度」,但从严格意义上看, 这种做法并不规 float 的取值范围远大于 int ?这非 常反直觉,因为按理说 float 需要表示小数,取值范围应该变小才对。 实际上,这是因为浮点数 float 采用了不同的表示方式。根据 IEEE 754 标准,32‑bit 长度的 float 由以下 部分构成: ‧ 符号位 S :占 1 bit 。 ‧ 指数位 E :占 8 bits 。 ‧ 分数位 N :占 24 bits ,其中 23 位显式存储。
    0 码力 | 347 页 | 27.40 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Golang版

    均时间复杂度为 Θ(?/2) = Θ(?) 。 但对于较为复杂的算法,计算平均时间复杂度往往是比较困难的,因为很难分析出在数据分布下的整体数学 期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。 � 为什么很少看到 Θ 符号? 可能由于 ? 符号过于朗朗上口,我们常常使用它来表示平均时间复杂度。但从严格意义上看, 这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 需要表示小数,取值范围应该变小才对。 实际上,这是因为浮点数 float 采用了不同的表示方式。记一个 32‑bit 长度的二进制数为: ?31?30?29 … ?2?1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 bit ,对应 ?31 。 ‧ 指数位 E :占 8 bits ,对应 ?30?29 … ?23 。 ‧ 分数位 254} (1 + N) =(1 + 23 ∑ ?=1 ?23−?2−?) ⊂ [1, 2 − 2−23] 第 3 章 数据结构 hello‑algo.com 57 图 3‑5 IEEE 754 标准下的 float 的计算示例 观察图 3‑5 ,给定一个示例数据 S = 0 ,E = 124 ,N = 2−2 + 2−3 = 0.375 ,则有: val = (−1)0 × 2124−127
    0 码力 | 379 页 | 30.70 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Golang版

    2) = Θ(?) 。 但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分布 下的整体数学期望。这种情况下,我们一般使用最差时间复杂度来作为算法效率的评判标准。 2. 复杂度分析 hello‑algo.com 27 � 为什么很少看到 Θ 符号? 实际中我们经常使用「大 ? 符号」来表示「平均复杂度」,这样严格意义上来说是不规范的。这 可能是因为 bytes ,但为什么 float 的取值范围远大于 int ?按说 float 需要表示小数,取值范围应该变小才对。 其实,这是因为浮点数 float 采用了不同的表示方式。IEEE 754 标准规定,32‑bit 长度的 float 由以下部分构 成: ‧ 符号位 S :占 1 bit ; ‧ 指数位 E :占 8 bits ; ‧ 分数位 N :占 24 bits ,其中 23 位显式存储; + N) =(1 + 23 ∑ ?=1 ?23−?2−?) ⊂ [1, 2 − 2−23] 3. 数据结构简介 hello‑algo.com 40 Figure 3‑1. IEEE 754 标准下的 float 表示方式 以上图为例,S = 0 ,E = 124 ,N = 2−2 + 2−3 = 0.375 ,易得 val = (−1)0 × 2124−127 × (1 + 0.375)
    0 码力 | 190 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Golang版

    2) = Θ(?) 。 但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分布 下的整体数学期望。这种情况下,我们一般使用最差时间复杂度来作为算法效率的评判标准。 2. 复杂度分析 hello‑algo.com 27 � 为什么很少看到 Θ 符号? 实际中我们经常使用「大 ? 符号」来表示「平均复杂度」,这样严格意义上来说是不规范的。这 可能是因为 bytes ,但为什么 float 的取值范围远大于 int ?按说 float 需要表示小数,取值范围应该变小才对。 其实,这是因为浮点数 float 采用了不同的表示方式。IEEE 754 标准规定,32‑bit 长度的 float 由以下部分构 成: ‧ 符号位 S :占 1 bit ; ‧ 指数位 E :占 8 bits ; ‧ 分数位 N :占 24 bits ,其中 23 位显式存储; + N) =(1 + 23 ∑ ?=1 ?23−?2−?) ⊂ [1, 2 − 2−23] 3. 数据结构简介 hello‑algo.com 40 Figure 3‑1. IEEE 754 标准下的 float 表示方式 以上图为例,S = 0 ,E = 124 ,N = 2−2 + 2−3 = 0.375 ,易得 val = (−1)0 × 2124−127 × (1 + 0.375)
    0 码力 | 202 页 | 15.73 MB | 1 年前
    3
  • pdf文档 Go Web编程

    Go的三种安装方式 Go的三种安装方式 Go有多种安装方式,你可以选择自己喜欢的。这里我们介绍三种最常见的安装方式: Go源码安装:这是一种标准的软件安装方式。对于经常使用Unix类系统的用户,尤其对于开发者来说,从源 码安装是最方便而熟悉的。 Go标准包安装:Go提供了方便的安装包,支持Windows、Linux、Mac等系统。这种方式适合初学者,可根据自 己的系统位数下载好相应的安装包,一路next就可以轻松安装了。 源码安装之后执行Go命令的图 如果出现Go的Usage信息,那么说明Go已经安装成功了;如果出现该命令不存在,那么可以检查一下自己的PATH环境 变中是否包含了Go的安装目录。 Go标准包安装 Go标准包安装 Go提供了每个平台打好包的一键安装,这些包默认会安装到如下目录:/usr/local/go (Windows系统:c:\Go),当然 你可以改变他们的安装位置,但是改变之后你必须在你的环境变量中设置如下信息: 译文件都是和系统相关的, 但是对于源码管理来说没必要 go fmt go fmt 有过C/C++经验的读者会知道,一些人经常为代码采取K&R风格还是ANSI风格而争论不休。在go中,代码则有标准的风 格。由于之前已经有的一些习惯或其它的原因我们常将代码写成ANSI风格或者其它更合适自己的格式,这将为人们在 阅读别人的代码时添加不必要的负担,所以go强制了代码格式(比如左大括号必须放在行尾),不按照此格式的代码
    0 码力 | 295 页 | 5.91 MB | 1 年前
    3
  • pdf文档 大规模高性能区块链架构设计模式与测试框架-李世敬

    测试框架 治理层 权限体系 治理模型 区块链审计 BaaS运维治理 应⽤层 司法存证 供应链⾦融 智慧政务 物联⽹ 能源电⼒ 跨境贸易 ⼯业物联⽹ 智慧城市 ... 不同于完全开放、任何⼈可以加⼊退出的⾮许可链,许可链架构与其差异性在于节点和⽤户在区块链⽹络中的准 ⼊要求。且⾮许可链⽹络节点⼤都由业务相关的机构组成,造成架构上共识、合约、安全、权限等⽅⾯的不同 13 趣链科技 测试框架 治理层 权限体系 治理模型 区块链审计 BaaS运维治理 应⽤层 司法存证 供应链⾦融 智慧政务 物联⽹ 能源电⼒ 跨境贸易 ⼯业物联⽹ 智慧城市 ... 不同于完全开放、任何⼈可以加⼊退出的⾮许可链,许可链架构与其差异性在于节点和⽤户在区块链⽹络中的准 ⼊要求。且⾮许可链⽹络节点⼤都由业务相关的机构组成,造成架构上共识、合约、安全、权限等⽅⾯的不同 �可�架构 可信存储 数据共享 BitXMesh 联邦计算 跨链协议层 验证引擎 跨链网关 BitXHub 跨链协议 全球首个完善区块链3.0全栈全生态支持:区块链基础共识网络、链上链下协同、跨链协同与开放服务平台。 Azolla 区块链+物联网 : 软硬一体化 专用模组 专用芯片 安可适配 IoT设备管理 趣链区块链产品矩阵 37 趣链科技 版权所有 ©2016-2021 ⾼安全 易⽤性
    0 码力 | 39 页 | 56.58 MB | 1 年前
    3
共 46 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
Golang大规规模大规模原生应用管理实践Hello算法1.1Go1.01.2简体中文简体中文0b40b50b10b2Web编程高性性能高性能区块架构构设设计架构设计模式测试框架李世敬
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩