积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(29)C++(29)

语言

全部中文(简体)(28)中文(繁体)(1)

格式

全部PPT文档 PPT(18)PDF文档 PDF(11)
 
本次搜索耗时 0.030 秒,为您找到相关结果约 29 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    r15b, r15w, r15d, r15 AT&T 汇编语言 GCC 编译器所生成的汇编语言就属于这种 返回值:通过 eax 传出 movl $42, %eax 相当于: eax = 42; 前 6 个参数:分别通过 edi , esi , edx , ecx , r8d , r9d 传入 movl %edi, -4(%rsp) 相当于: *(rsp - 4) = edi; 开启优化: -O3 。 第 3 章:指针 编译器傻了吗? 为什么编译器不优化掉 *c = *a ? 指针别名现象( pointer aliasing ) 考虑这种调用方式: b 和 c 指向同一个变量。 优化前相当于: b = a; b = b; 最后 b 变成了 a 。 如果优化了: b = b; 最后 b 没有改变。 导致优化后结果不一样,这就是 编译器放弃优化的原因。 告诉编译器别怕指针别名: __restrict 个 int 的加法,从而更加高 效但这样有个缺点,那就是数组的大小必须为 4 的整数倍 否则就会写入越界的地址! 如果不是 4 的倍数?边界特判法 看不懂?很简单,假设 n = 1023 : 先对前 1020 个元素用 SIMD 指令填入,每次处理 4 个 剩下 3 个元素用传统的标量方式填入,每次处理 1 个 思想:对边界特殊处理,而对大部分数据能够矢量化 编译器做优化时会自动处理边界特
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    的执行队列上,然后立即 返回,并不会等待执行完毕。 • 因此可以调用 cudaDeviceSynchronize() ,让 CPU 陷 入等待,等 GPU 完成队列的所有任务后再返回。从而 能够在 main 退出前等到 kernel 在 GPU 上执行完。 定义在 GPU 上的设备函数 • __global__ 用于定义核函数,他在 GPU 上执行,从 CPU 端通过三重尖括号语法调 用,可以有参数,不可以有返回值。 如需总的线程编号: blockDim * blockIdx + threadIdx 分离 __device__ 函数的声明和定义:出错 • 默认情况下 GPU 函数必须定义在同一个文件里。 如果你试图分离声明和定义,调用另一个文件里 的 __device__ 或 __global__ 函数,就会出错 。 分离 __device__ 函数的声明和定义:解决 • 开启 CMAKE_CUDA_ CMAKE_CUDA_SEPARABLE_COMPILATION 选 项(设为 ON ),即可启用分离声明和定义的支持。 • 不过我还是建议把要相互调用的 __device__ 函数放在 同一个文件,这样方便编译器自动内联优化(第四课讲 过)。 两种开启方式:全局有效 or 仅针对单个程序 只对 main 这个程序启用: 对下方所有的程序启用(推荐): 顺便一提, CXX_STANDARD 和 CUDA_ARCHITECTURES
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起

    里,然后在需要用到 hello() 这个声 明的地方,打上一个记号, #include “hello.h” 。然后用一个小程序,自动在编译前把引号 内的文件名 hello.h 的内容插入到记号所在的位置,这样不就只用编辑 hello.h 一次了嘛 ~ • 后来,这个编译前替换的步骤逐渐变成编译器的了一部分,称为预处理阶段, #define 定 义的宏也是这个阶段处理的。 • 此外,在实现的文件 hello hello.cpp 被修改时,比如改成 hello(int) ,编译器能够发现 hello.h 声明的 hello() 和定 义的 hello(int) 不一样,避免“沉默的错误”。 编译前替换 编译前替换 头文件 - 批量插入几行代码的硬核方式 • 实际上 cstdio 也无非是提供了 printf 等一系列函数声明的头文件而已,实际的实现是在 libc.so 这个动态库里。其中 hello() 和定义的 hello(int) 不一样,避免“沉默的错误”(虽然对支持重载的 C++ 不奏 效) 2. 可以让 hello.cpp 中的函数需要相互引用时,不需要关心定义的顺序。 编译前替换 编译前替换 头文件进阶 - 递归地使用头文件 • 在 C++ 中常常用到很多的类,和函数一样,类的声明也会被放到头文件中。 • 有时候我们的函数声明需要使用到某些类,就需要用到声明了该类的头文件,像这样递归
    0 码力 | 32 页 | 11.40 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 03 现代 C++ 进阶:模板元编程

    non-constexpr 函数。而且 constexpr 函数必须是内联 ( inline )的,不能分离声明和定义在另一个文件里。标准库的很多函数如 std::min 也是 constexpr 函数,可以放心大胆在模板尖括号内使用。 模板的难题:移到另一个文件中定义 • 如果我们试着像传统函数那样分离模板函数的声明与实现: • 就会出现 undefined reference 错误: 模板的难题:移到另一个文件中定义(续) 里只看到 sumto<> 函数的两份声明,从而出错。 • 解决:在看得见 sumto<> 定义的 sumto.cpp 里,增加两个显式编译模板的声明: 一般来说,我会建议模板不要 分离声明和定义,直接写在头 文件里即可。如果分离还要罗 列出所有模板参数的排列组合 ,违背了开 - 闭原则。 模板的惰性:延迟编译 • 要证明模板的惰性,只需看这个例子: • 要是编译器哪怕细看了一眼:字符串怎么可能被写入呢?肯定是会出错的。 1. 当函数有多条 return 语句时,所有语句的返回类型必须一致,否则 auto 会报错。 2. 当函数没有 return 语句时, auto 会被推导为 void 。 3. 如果声明和实现分离了,则不能声明为 auto 。比如: auto func(); // 错误 C++ 特性:引用( int & ) • 众所周知, C++ 中有一种特殊的类型,叫做引用。只需要在原类型后面加一个 &
    0 码力 | 82 页 | 12.15 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 13 C++ STL 容器全解之 vector

    const &val); vector 容器: resize • 调用 resize(n) 的时候,如果数组里面不足 n 个元素,假设是 m 个,则他只会用 0 填充新增 的 n - m 个元素,前 m 个元素会保持不变。 • vector a = {1, 2}; • a.resize(4); • 等价于: • vector a = {1, 2, 0, 0}; • void resize(size_t n); vector 容器: resize • 调用 resize(n) 的时候,如果数组已有超过 n 个元素,假设是 m 个,则他会删除多出来的 m - n 个元素,前 n 个元素会保持不变。 • vector a = {1, 2, 3, 4, 5, 6}; • a.resize(4); • 等价于: • vector a = {1, 2 容器: resize • 调用第二个重载 resize(n, val) 的时候,如果数组 里面不足 n 个元素,假设是 m 个,则他只会用第 二个参数 val 填充新增的 n - m 个元素,前 m 个 元素会保持不变。 • vector a = {1, 2}; • a.resize(4, 233); • 等价于: • vector a = {1, 2, 233
    0 码力 | 90 页 | 4.93 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程

    应用程序中很常见,比如浏览 器在后台下载文件的同时,用户仍然可以 用鼠标操作其 UI 界面。 没有多线程:程序未响应 • 没有多线程的话,就必须等文件下载完了 才能继续和用户交互。 • 下载完成前,整个界面都会处于“未响应”状 态,用户想做别的事情就做不了。 现代 C++ 中的多线程: std::thread • C++11 开始,为多线程提供了语言级别的 支持。他用 std::thread download 函数才会出师未捷身先死 ——还没开始执行他的线程就被销毁了。 解构函数不再销毁线程: t1.detach() • 解决方案:调用成员函数 detach() 分离该 线程——意味着线程的生命周期不再由当 前 std::thread 对象管理,而是在线程退 出以后自动销毁自己。 • 不过这样还是会在进程退出时候自动退出 。 解构函数不再销毁线程:移动到全局线程池 • 但是 在运行物理解算的时候,界面会卡住,算完一帧后窗口才能刷新一遍 ,导致解算过程中基本别想做事,这一定程度上归功于 opengl 原始的单线程设计。 • 正面教材: zeno 可以在解算过程中,随时拖动滑块看前几帧的结果,编辑场景图,修改 节点间的连接,为下一次解算做准备,同时当前已经启动的物理解算还能在后台继续正常 运行。虽然 zeno 也用了 opengl ,但他用多进程成功在 opengl 的百般拖后腿下实现了
    0 码力 | 79 页 | 14.11 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    getter/setter 封装。 • 各个成员之间相互正交,比如数学矢量类 Vec3 ,就没必要去搞封装,只会让程序员 变得痛苦,同时还有一定性能损失:特别 是如果 getter/setter 函数分离了声明和定 义,实现在另一个文件时! C++ 思想: RAII ( Resource Acquisition Is Initialization ) 资源获取视为初始化,反之,资源释放视为销毁 制权后,仍希望访问到对象的需求。 • 如果还是用 p 去访问的话,因为被移动构 造函数转移了, p 已经变成空指针,从而 出错。 解决方案:提前获取原始指针 • 最简单的办法是,在移交控制权给 func 前,提前通过 p.get() 获取原始指针: 解决方案:提前获取原始指针(续) • 不过你得保证 raw_p 的存在时间不超过 p 的生命周期,否则会出现危险的空悬指 针。比如右边这样: 更智能的指针: 根据实际情况 (主要是看所有权),判断要用哪一种智能指针: 1. unique_ptr :当该对象仅仅属于我时。比如:父窗口中指向子 窗口的指针。 2. 原始指针:当该对象不属于我,但他释放前我必然被释放时。 有一定风险。比如:子窗口中指向父窗口的指针。 3. shared_ptr :当该对象由多个对象共享时,或虽然该对象仅仅 属于我,但有使用 weak_ptr 的需要。 4. weak_ptr
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    结构体的内存布局: AOS 与 SOA • AOS ( Array of Struct )单个对象的属性紧挨着存 • xyzxyzxyzxyz • SOA ( Struct of Array )属性分离存储在多个数组 • xxxxyyyyzzzz • AOS 必须对齐到 2 的幂才高效, SOA 就不需要。 • AOS 符合直觉,不一定要存储在数组这种线性结构, 而 SOA 可能无法保证多个数组大小一致。 解决方案就是,把分块的大小调的更大一些,比 如 4KB 那么大,即 64 个缓存行,而不是一个。 • 这样一次随机访问之后会伴随着 64 次顺序访问, 能被 CPU 检测到,从而启动缓存行预取,避免了 等待数据抵达前空转浪费时间。 页对齐的重要性 • 为什么要 4KB ?原来现在操作系统管理内存是用分页 ( page ),程序的内存是一页一页贴在地址空间中的, 有些地方可能不可访问,或者还没有分配,则把这个页设 以后只分配了 4KB 的内存。等到用户访问了 a[1024] ,也就是触及了下一个页面,他才 会继续分配一个 4KB 的页面,这时才 8KB 被实际分配。比如这里我们分配了 16GB 内 存,但是只访问了他的前 4KB ,这样只有一个页被分配,所以非常快。 • 其实操作系统惰性分配的特性,也是 SPGrid ( Sparsely-Paged-Grid )得以实现的基础 ,他利用 mmap 分配比机器大得多的内存(比如
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • pdf文档 现代C++ 教程:高速上手C++11/14/17/20

    关键字被弃用,可以使用但不再具备任何实际含义。 • bool 类型的 ++ 操作被弃用。 • 如果一个类有析构函数,为其生成拷贝构造函数和拷贝赋值运算符的特性被弃用了。 • C 语言风格的类型转换被弃用(即在变量前使用 (convert_type)),应该使用 static_cast、 reinterpret_cast、const_cast 来进行类型转换。 • 特别地,在最新的 C++17 标准中弃用了一些可以使用的 之间的区别)。在编写 C++ 时,也应该尽可能 的避免使用诸如 void* 之类的程序风格。而在不得不使用 C 时,应该注意使用 extern "C" 这种特性, 将 C 语言的代码与 C++ 代码进行分离编译,再统一链接这种做法,例如: // foo.h #ifdef __cplusplus extern "C" { #endif int add(int x, int y); #ifdef 及其相关 第 6 章正则表达式 字符 描述 {n,m} m 和 n 均为非负整数,其中 n 小于等于 m。最少匹配 n 次且最多匹配 m 次。例如, o{1,3} 将匹配 foooooo 中的前三个 o。o{0,1} 等价于 o?。注意,在逗号和两个数之 间不能有空格。 有了这两张表,我们通常就能够读懂几乎所有的正则表达式了。 6.2 std::regex 及其相关 对字符串内容进行
    0 码力 | 83 页 | 2.42 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型

    疏网格、位运算、浮点的二进制格式、内存带宽优 化 面向人群:图形学、 CFD 仿真、深度学习编程人 员 第 0 章:稀疏矩阵 稠密数组存储矩阵 用 foreach 包装一下枚举的过程 改用 map 来存储 分离 read/write/create 三种访问模式 foreach 直接给出当前坐标指向的值 改用 unordered_map 来存储 unordered_map 手动 read(i, j) 也一样速度 以后只分配了 4KB 的内存。等到用户访问了 a[1024] ,也就是触及了下一个页面,他才 会继续分配一个 4KB 的页面,这时才 8KB 被实际分配。比如这里我们分配了 16GB 内 存,但是只访问了他的前 4KB ,这样只有一个页被分配,所以非常快。 实验:那如果分配超过机器内存容量的空间会怎样 • 既然是操作系统的内存是惰性分配给用户程 序的,分块大小就是 4KB ,那么是不是可 以利用这一点实现稀疏?
    0 码力 | 102 页 | 9.50 MB | 1 年前
    3
共 29 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件0408010313050207现代教程高速上手1114172010
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩