积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(25)C++(25)

语言

全部中文(简体)(24)中文(繁体)(1)

格式

全部PPT文档 PPT(15)PDF文档 PDF(10)
 
本次搜索耗时 0.027 秒,为您找到相关结果约 25 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    现代 C++ 入门: RAII 内存管 理 by 彭于斌( github@archibate ) 往期录播: https://space.bilibili.com/263032155 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: nv 将多个逻辑上相关的变量包装成一个类 因此 C++ 的 vector 将他俩打包起来,避免程序员犯错 封装:不变性 比如当我要设置数组大小为 4 时,不能只 nv = 4 还要重新分配数组内存,从而修改数组起始地址 v 常遇到:当需要修改一个成员时,其他也成员需要被修改,否则出错 这种情况出现时,就意味着你需要把成员变量的读写封装为成员函数 不变性:请勿滥用封装 • 仅当出现“修改一个成员时,其他也成员要
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    com/parallel101/course 为什么往 int 数组里赋值 1 比赋值 0 慢一倍? 第 1 章:内存带宽 cpu-bound 与 memory-bound • 通常来说,并行只能加速计算的部分,不能加速内存读写的部分 。 • 因此,对 fill 这种没有任何计算量,纯粹只有访存的循环体,并 行没有加速效果。称为内存瓶颈( memory-bound )。 • 而 sine 这种内部需要泰勒展开来计算,每次迭代计算量很大的 这种内部需要泰勒展开来计算,每次迭代计算量很大的 循环体,并行才有较好的加速效果。称为计算瓶颈( cpu- bound )。 • 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 。 浮点加法的计算量 • 冷知识:并行地给浮点数组每个元素做一次加法反而更慢。 • 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 。 • 小彭老师经验公式: 64 字节)所花费的时间。 • 根据计算: 125/64*4≈8 • 即从主内存读取一次 float 花费 8 个 cycle , 符合小彭老师的经验公式。 • “right” 和“ wrong” 指的是分支预测是否成功。 多少计算量才算多? • 看右边的 func ,够复杂了吧?也只是勉勉强强超过一 点内存的延迟了,但在 6 个物理核心上并行加速后, 还是变成 mem-bound 了。
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 10 从稀疏数据结构到量化数据类型

    课程 PPT 和代码: https://github.com/parallel101/course 本课涵盖:稀疏矩阵、 unordered_map 、空间稀 疏网格、位运算、浮点的二进制格式、内存带宽优 化 面向人群:图形学、 CFD 仿真、深度学习编程人 员 第 0 章:稀疏矩阵 稠密数组存储矩阵 用 foreach 包装一下枚举的过程 改用 map 来存储 分离 read/write/create node) ,而这里的 unordered_map 就是充当根节点 (root node) 。 图片解释稀疏的好处 传统稠密二维数组 无边界稀疏分块哈希表 此外,还是按需分配内存,即使被写入的部分奇形怪状也不会浪费内存。 这些被写入的部分被称为激活元素 (active element) ,反之则是未激活 (inactive) 。 这就是稀疏的好处,按需分配,自动扩容。 分块则是利用了我们存储的 (空指针) 图片解释:指针数组的稀疏 这样指针表中为 null 的部分,稠密叶节点的内存就省掉 了 垃圾回收 (garbage-collect) • 如果是运行的仿真,则液体可能会移动到 别的地方去。这时液体曾经存在过的地方 也仍然处于激活状态,可以每隔若干帧及 时释放掉这些不用的指针块以节省内存。 unordered_map 作为顶层,指针作为中层,稠密数组作为底层 • 实现稀疏的方法有:
    0 码力 | 102 页 | 9.50 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: r8 到 r15 是 64 位 x86 新增的寄存器,给了汇编程序员更大的空间,降低了编译 器处理寄存器翻车( register spill )的压力。 • 因此 64 位比 32 位机器相比,除了内存突破 4GB 限制外,也有一定性能优势。 8 位, 16 位, 32 位, 64 位版本 al, ax, eax, rax r15b, r15w, r15d, r15 AT&T 汇编语言 GCC SIMD 让访问内存更有规律,节约了指 令解码和指令缓存的压力等原因,出现加速超过 4 倍的情况。 第 1 章:化简 编译器优化:代数化简 编译器优化:常量折叠 编译器优化:举个例子 编译器优化:我毕竟不是万能的 结论:尽量避免代码复杂化,避免使用会造 成 new/delete 的容器。 简单的代码,比什么优化手段都强。 造成 new/delete 的容器:我是说,内存分配在堆上的容器
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: 12 个逻辑核心。 • 似乎这里 reduce 的加速比是逻辑核心数量,而 for 的加速比是物理核心的数量? • 剧透:因为本例中 reduce 是内存密集型, for 是计算密集型。 • 超线程对 reduce 这种只用了简单的加法,瓶颈在内存的算法起了作用。 • 而本例中 for 部分用了 std::sin ,需要做大量数学运算,因此瓶颈在 ALU 。 • 这里卖个关子,欲知后事如何,请待下集揭晓! 且都是最近访问过的,从而已经在缓存里可以 直接读写,避免了从主内存读写的超高延迟。 • 下次课会进一步深入探讨访存优化,详细剖析 这个案例,那么下周六 14 点敬请期待。 第 6 章:并发容器 std::vector 扩容时会移动元素 • std::vector 内部存储了一个指针,指向一段容量 capacity 大于等于其 size 的内存。 • 众所周知, push_back 会导致 size
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程

    入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: 除了接受一个时间段的 sleep_for ,还有 接受一个时间点的 sleep_until ,表示让当 前线程休眠直到某个时间点。 第 1 章:线程 进程与线程 • 进程是一个应用程序被操作系统拉起来加载到内存之后从开始执行到执行结束的这样一个 过程。简单来说,进程是程序(应用程序,可执行文件)的一次执行。比如双击打开一个 桌面应用软件就是开启了一个进程。 • 线程是进程中的一个实体,是被系统独立分配和调度的基本单位。也有说,线程是 可 执行调度的最小单位。也就是说,进程本身并不能获取 CPU 时间,只有它的线程才可以。 • 从属关系:进程 > 线程。一个进程可以拥有多个线程。 • 每个线程共享同样的内存空间,开销比较小。 • 每个进程拥有独立的内存空间,因此开销更大。 • 对于高性能并行计算,更好的是多线程。 为什么需要多线程:无阻塞多任务 • 我们的程序常常需要同时处理多个任务。 • 例如:后台在执行一个很耗时的任务,比
    0 码力 | 79 页 | 14.11 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起

    入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: 其中静态库相当于直接把代码插入到生成的可执行文件中,会导致体积变大,但是只需要 一个文件即可运行。 • 而动态库则只在生成的可执行文件中生成“插桩”函数,当可执行文件被加载时会读取指定目 录中的 .dll 文件,加载到内存中空闲的位置,并且替换相应的“插桩”指向的地址为加载后的 地址,这个过程称为重定向。这样以后函数被调用就会跳转到动态加载的地址去。 • Windows :可执行文件同目录,其次是环境变量 %PATH%
    0 码力 | 32 页 | 11.40 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    API 和这个很像,但毕竟没有 CUDA 可以直接在核函数里调用核函数并指定参数这么方便…… 不过,这个功能同样需要开启 CUDA_SEPARABLE_COMPILATION 。 第 2 章:内存管理 如何从核函数里返回数据? • 我们试着把 kernel 的返回类型声明为 int ,试 图从 GPU 返回数据到 CPU 。 • 但发现这样做会在编译期出错,为什么? • 刚刚说了 kernel 访问,结果还是失败了。 原因: GPU 使用独立的显存,不能访问 CPU 内存 • 原来, GPU 和 CPU 各自使用着独立的内 存。 CPU 的内存称为主机内存 (host) 。 GPU 使 用的内存称为设备内存 (device) ,他是显卡上板载 的,速度更快,又称显存。 • 而不论栈还是 malloc 分配的都是 CPU 上的内存 ,所以自然是无法被 GPU 访问到。 • 因此可以用用 cudaMalloc 反之亦然, CPU 也不能访问 GPU 的内存地址 • 你可能已经迫不及待想通过 *pret 访问其 返回值了。但是不行,因为 GPU 访问不 了 CPU 的内存地址,同理, CPU 也访 问不了 GPU 的内存地址。一访问 CPU 就奔溃了。 跨 GPU/CPU 地址空间拷贝数据 • 因此可以用 cudaMemcpy ,他能够在 GPU 和 CPU 内存之间拷贝数据。 • 这里我们希望把
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 03 现代 C++ 进阶:模板元编程

    入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: const & 可以定义常引用: 自动类型推导:函数返回引用 • 当然,函数的返回类型也可以是 auto & 或者 auto const & 。比如懒汉单例模式: 理解右值:即将消失的,不长时间存在于内存中的值 • 引用又称为左值( l-value )。左值通常对应着一个长时间存在于内 存中的变量。 • 除了左值之外,还有右值( r-value )。右值通常是一个表达式,代 表计算过程中临时 fac 时, 却出了问题: • fac 似乎变成 32764 了? • 这是因为 [&] 捕获的是引用,是 fac 的地 址,而 make_twice 已经返回了,导致 fac 的引用变成了内存中一块已经失效的 地址。 • 总之,如果用 [&] ,请保证 lambda 对象 的生命周期不超过他捕获的所有引用的寿 命。 作为返回值:解决问题 • 这时,我们可以用 [=] 来捕获,他会捕
    0 码力 | 82 页 | 12.15 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    4.3 列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 内存与缓存 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.5 小结 . . . 到了可行的找零方 案。从数据结构与算法的角度看,这种方法本质上是“贪心”算法。 小到烹饪一道菜,大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现使得我们能够通过编程 将数据结构存储在内存中,同时编写代码调用 CPU 和 GPU 执行算法。这样一来,我们就能把生活中的问题 转移到计算机上,以更高效的方式解决各种复杂问题。 Tip 如果你对数据结构、算法、数组和二分查找等概念仍感 问题是明确的,包含清晰的输入和输出定义。 ‧ 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,在相同的输入和运行条件下,输出始终相同。 1.2.2 数据结构定义 数据结构(data structure)是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量少,以节省计算机内存。 第 1 章 初识算法 hello‑algo.com 14 ‧ 数据操
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件020710040605010803Hello算法1.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩