积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(39)Python(39)Flask(1)

语言

全部英语(21)中文(简体)(18)

格式

全部PDF文档 PDF(39)
 
本次搜索耗时 0.051 秒,为您找到相关结果约 39 个.
  • 全部
  • 后端开发
  • Python
  • Flask
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 1_丁来强_开源AIOps数据中台搭建与Python的作用

    数据采集、数据中台、智能算法、⾃自动化等 AIOps系统(常规层次) AIOps系统架构 • 场景应⽤用 • 智能监测系统 • ⾃自动化系统 • ⼯工单知识库 • 数据湖 • 监控⽣生态系统 • 数据源 数据的摄取挑战 • 各种来源: • SaaS、多云、容器器、微服务、主机、应⽤用等 • 各种数据样式: • Log、Tracking、Event;Metrics、IoT ics、IoT data;⽹网络数据; • ⽂文本、⼯工单、知识库;API;代码等 • ⼤大数据的3V(容量量、变化、种类) 数据类型⽐比较 数据类型与⽐比较 ⽇日志 Tracking 指标 ⽂文本 数据格式 ⾮非结构化 半结构化,数据关联 结构化(聚集) ⾮非结构化 数据量量 ⼤大 较⼤大 ⼀一般到极⼤大(IoT) ⼀一般 单条⼤大⼩小 100~10KB 100~10KB < 500 ⼀一般 加⼯工难度 较难 ⼀一般 简单 较难 价值 ⾼高(尤其安全) ⾼高 随着时间推移变低 ⽐比较⾼高 数据之间的重叠 数据中台的处理理 • 海海量量多样数据的存储/索引: • 时序指标数据、⽂文本数据、⽇日志、⽹网络数据、Tracking等 • 各种分析的⽀支持: • 流式分析:流式或微批实时处理理 • 统计关联分析:多维度的实时关联统计与分析⽀支持,⽀支持交互式add-hoc⽅方式
    0 码力 | 48 页 | 17.54 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Python版

    找到问题解法:算法需要在规定的输入范围内可靠地求得问题的正确解。 2. 寻求最优解法:同一个问题可能存在多种解法,我们希望找到尽可能高效的算法。 也就是说,在能够解决问题的前提下,算法效率已成为衡量算法优劣的主要评价指标,它包括以下两个维 度。 ‧ 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 况下,控制空间复杂度也非常重要。 第 2 章 复杂度分析 hello‑algo.com 47 2.5 小结 1. 重点回顾 算法效率评估 ‧ 时间效率和空间效率是衡量算法优劣的两个主要评价指标。 ‧ 我们可以通过实际测试来评估算法效率,但难以消除测试环境的影响,且会耗费大量计算资源。 ‧ 复杂度分析可以消除实际测试的弊端,分析结果适用于所有运行平台,并且能够揭示算法在不同数据 规模下的效率。
    0 码力 | 364 页 | 18.42 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Python版

    找到问题解法:算法需要在规定的输入范围内可靠地求得问题的正确解。 2. 寻求最优解法:同一个问题可能存在多种解法,我们希望找到尽可能高效的算法。 也就是说,在能够解决问题的前提下,算法效率已成为衡量算法优劣的主要评价指标,它包括以下两个维 度。 ‧ 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 况下,控制空间复杂度也非常重要。 第 2 章 复杂度分析 hello‑algo.com 47 2.5 小结 1. 重点回顾 算法效率评估 ‧ 时间效率和空间效率是衡量算法优劣的两个主要评价指标。 ‧ 我们可以通过实际测试来评估算法效率,但难以消除测试环境的影响,且会耗费大量计算资源。 ‧ 复杂度分析可以消除实际测试的弊端,分析结果适用于所有运行平台,并且能够揭示算法在不同数据 规模下的效率。
    0 码力 | 362 页 | 17.54 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Python 版

    找到问题解法:算法需要在规定的输入范围内可靠地求得问题的正确解。 2. 寻求最优解法:同一个问题可能存在多种解法,我们希望找到尽可能高效的算法。 也就是说,在能够解决问题的前提下,算法效率已成为衡量算法优劣的主要评价指标,它包括以下两个维 度。 ‧ 时间效率:算法运行时间的长短。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。比如一个算法的并行度较高,那 么它就更适合在多核 制空间复杂度也非常重要。 第 2 章 复杂度分析 www.hello‑algo.com 47 2.5 小结 1. 重点回顾 算法效率评估 ‧ 时间效率和空间效率是衡量算法优劣的两个主要评价指标。 ‧ 我们可以通过实际测试来评估算法效率,但难以消除测试环境的影响,且会耗费大量计算资源。 ‧ 复杂度分析可以消除实际测试的弊端,分析结果适用于所有运行平台,并且能够揭示算法在不同数据 规模下的效率。
    0 码力 | 364 页 | 18.43 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b5 Python版

    找到问题解法:算法需要在规定的输入范围内,可靠地求得问题的正确解。 2. 寻求最优解法:同一个问题可能存在多种解法,我们希望找到尽可能高效的算法。 也就是说,在能够解决问题的前提下,算法效率已成为衡量算法优劣的主要评价指标,它包括以下两个维 度。 ‧ 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。比如在某台计算机中,算法 A 的 运行时间比算法 空间换时间”通 常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也是非常重要的。 2.5 小结 1. 重点回顾 算法效率评估 ‧ 时间效率和空间效率是衡量算法优劣的两个主要评价指标。 ‧ 我们可以通过实际测试来评估算法效率,但难以消除测试环境的影响,且会耗费大量计算资源。 ‧ 复杂度分析可以克服实际测试的弊端,分析结果适用于所有运行平台,并且能够揭示算法在不同数据 规模下的效率。
    0 码力 | 361 页 | 30.64 MB | 1 年前
    3
  • pdf文档 Python的智能问答之路 张晓庆

    工作流? • 语言工具 Ø C++ Ø Python Ø Java Ø GO • 模型 Ø 统计模型 Ø 传统机器学习模型 Ø 深度学习模型 Ø 如何选择?是否组合? • 评估 Ø 评估指标 Ø 工具 • 迭代 Ø 策略? • 服务化 Ø 服务框架 Ø 性能 Ø 稳定性 各个击破-业务 u 想给小孩报名英文课,不清楚课程内 容和价格怎么办? u 课程看着不错,能直接帮忙预约一次 learn:调用LR训练模型 各个击破-评估 • 评估数据 Ø 领域均衡:6个领域,每个领域50个知识点 Ø 评估数据对标训练数据:每个知识点12个相似问用于训练,3个相似问用于评估 • 评估指标 Ø 准确率/召回率/F1值 婴儿咳嗽怎么食疗 新生儿黄疸吃什么药 没有快递取货码怎么办 宝宝流鼻水咳嗽可以喝什么么 新生儿黄疸可以服用的药物 取货吗被我不小心删了怎么办 宝宝咳嗽吃什么食疗好阿
    0 码力 | 28 页 | 2.60 MB | 1 年前
    3
  • pdf文档 Python在金融领域的应用与创新 王宇韬

    Python舆情监控系统 2.华能信托及个人简介 4.华小智金融科技实验室 3.舆情监控详细代码分析 目录 CHAPTER 1 Python舆情监控系统 舆情监控系统 - 视频简介 HUMANS ARE CREATIVE BEINGS. IF IT IS NOT REAL TEXT, THEY WILL FOCUS ON THE DESIGN. 视频太大了,我就留个网址吧 舆情监控视频:https://v SHOW ME THE CODE CHAPTER 3 舆情监控详细代码分析 Python舆情监控 4 3 2 6 1 5 百度新闻批量爬取 24小时不间断爬取 舆情预警系统 数据清洗及优化 IP代理与反爬 舆情评分系统 HUANENG GUICHENG TRUST CORPORATION LTD. Python舆情监控 HUANENG GUICHENG TRUST CORPORATION 百度新闻批量爬取 24小时不间断爬取 舆情预警系统 数据清洗及优化 IP代理与反爬 舆情评分系统 HUANENG GUICHENG TRUST CORPORATION LTD. Python舆情监控 HUANENG GUICHENG TRUST CORPORATION LTD. 核心代码: import requests import re Headers={'User-Agent':
    0 码力 | 51 页 | 4.69 MB | 1 年前
    3
  • pdf文档 11 数字货币交易系统python实践 代少飞

    数字货币交易系统 Python实践 代少飞 目录 CONTENTS 常见问题 数据库锁问题 任务调度框架 监控 单击此处添加标题 1 常见问题  队列数据丢失  队列挂掉  负数资产  冲钱一次,转两倍资产 用户资产 用户发现自己资产为负数 负数资产 充一次转双倍 队列数据丢失 队列挂掉 RabbitMQ 撮合或者清算队列数据丢失 订单摆上去,能交易 • 远程调用支持RPyC(一个用作远程过程调用,同时也可以用作分 布式计算的Python模块),少量代码,轻松远程调用 APscheduler+twisted 4 监控  交易系统一行代码写错,可能损失好几百万 监控 • 首先每一笔资金变动都得有变动前后的值和原因 • 挂单精度是否正确 • 一个账户,一个币种,不算手续费,初略盘点 • 利用订单客观数据(挂单价格,数量,手续费),复现交易,与交
    0 码力 | 21 页 | 1.77 MB | 1 年前
    3
  • pdf文档 03 小罗 python与devops

    自动化以及持续集成(CI)、持续部署(CD)为 基础,来优化程式开发、测试、系统运维等所有 环节 构建Devops之前面临的问题 Devops 过程包含,代码构建打包、测试、部署、发布、监控、回滚等等一个 项目的闭环、快速构建以上过程。 构建Devops常用软件技术栈 •代码管理(SCM):GitHub、GitLab、SubVersion •构建工具:Ant、maven •自动 che Mesos、swarm •服务注册与发现:Zookeeper、etcd、Consul •脚本语言:python、ruby、shell •日志管理:ELK、Logentries •系统监控:zabbix、prometheus 前东家关于Devops的一些实践 Devops传统方式下构建示例 Devops发布流程需要考虑几个问题 1、发布什么应用,发布到哪里(CMDB) 2、发布人员是否有权限(RBAC) via ssh: ssh: connect to host 1.1.1.1 port 22: Connection timed out\r\n', 'unreachable': True}}} 监控系统二次开发 Zabbix api 二次开发 https://blog.51cto.com/xiaoluoge/1827151 #coding:utf-8 import time from zabbix_client
    0 码力 | 22 页 | 1.64 MB | 1 年前
    3
  • pdf文档 3 基于Azure的Python机器学习 王大伟

    如何用Azure完成机器学习 Azure与自动机器学习 Azure的相关学习资料 Azure与Python 日渐流行的Python TIOBE给出的排行榜是具有权威性质的,是判断语言流行趋势的指标。 TIOBE排行榜的网址是:https://tiobe.com/tiobe-index/ 日渐流行的Python 日渐流行的Python 日渐流行的Python 为什么用Python完成机器学习
    0 码力 | 31 页 | 3.69 MB | 1 年前
    3
共 39 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
丁来开源AIOps数据中台搭建Python作用Hello算法1.11.01.2简体中文简体中文0b5智能问答张晓庆金融领域应用创新王宇11数字货币交易系统交易系统python实践代少03小罗devops基于Azure机器学习大伟
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩