4 Python机器学习性能优化Python机器学习性能优化 以BERT服务为例例,从1到1000 刘欣 ⽬目录 CONTENTS 1. 优化的哲学 2. 了解你的资源 3. 定位性能瓶颈 4. 动⼿优化 1. 优化的哲学 "There ain't no such thing as a free lunch" Ahmdal’s Law • 系统整体的优化,取决于热点部分的占⽐比和该部分的加速程度 No Free Free Lunch • 定位热点 & 热点加速 • 对于项⽬目开发周期: 1. 先做出效果 2. 确定整体pipeline 3. 再考虑优化 • 对于⼈人⼯工智能项⽬目:迭代周期更更⻓长,更更是如此 以BERT服务为例 • BERT: TODO: ⼀一句句话解释 • 横扫多项NLP任务的SOTA榜 • 惊⼈人的3亿参数 以BERT服务为例 • Self Attention机制 's=Happy birthday to [MASK].' [“you"] 以BERT服务为例 • 我们现在上线了了这样⼀一个服务,每秒钟只能处理理10个请求 • Q: ⼤大家⼀一开始如何着⼿手优化 • Profile before Optimizing • 建⽴立闭环 2 了解你的资源 cpu/内存/io/gpu GPU为什么“快”? 计算⼒对⽐ • GFLOPS/s0 码力 | 38 页 | 2.25 MB | 1 年前3
2 使用Python训练和部署低精度模型 张校捷使用Python训练和部署低精度模型 (TensorFlow版) 张校捷 2019/9/21 目录 CONTENTS 低精度的概念和意义 TensorFlow的FP16模型 TensorRT的FP16/Int8模型 总结 1 低精度的概念和意义 实数的16-bit半精度浮点数和8-bit定点数表示 使用低精度的意义 深度学习模型中实数的表示 FP32: E8M23 FP16: ResNet-50-v1.5 3.3X speedup SSD-RN50-FPN-640 2.5X speedup FP16浮点数(E5M10)的表示范围 FP16模型的训练方法 Int8模型的推断过程 2 TensorFlow的FP16模型 实数的16-bit半精度浮点数和8-bit定点数表示 使用低精度的意义 TensorCores适用条件 1. 卷积:K(输入通道),C(输出通道) 2 2=1 TF_ENABLE_CUDNN_TENSOR_OP_MATH_FP32=1 TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32=1 TensorFlow手动转换模型 import tensorflow as tf import numpy as numpy input = tf.placeholder(dtype=tf.float32, shape=[None0 码力 | 24 页 | 981.45 KB | 1 年前3
1 藤井美娜 Python的NLP实战分享 如何实现合同风险预测模型Python的NLP实战分享 如何实现合同风险预测模型? GVA TECH Co., Ltd 藤井美娜 自我介绍 2% |# | self-introduction • Machine Learning Engineer / Data Scientist • GVA TECH的人工智能法律服务AI-CON的多语言系统 开发负责人 inazo18 藤井美娜 目录 CONTENTS CONTENTS 1. Python NLP 入门 2. 多语言NLP攻略 3.“合同风险预测模型”实战经验分享 4. 总结 5% |### | today’s topic 1 Python NLP 入门 简单介绍自然语言处理的流程和使用corpus的EDA方法。 8% |##### | section1 NLP基础 11% |######### | section1 收集语料 前处理 section1 收集语料 前处理 分词 向量化 机器学习模型 各种OUTPUT 语义解析 NLP基础 22% |################## | section1 收集语料 前处理 分词 向量化 机器学习模型 各种OUTPUT 语义解析 有时候会把语义分析的结果做成 feature,放进机器学习模型里。 EDA NLP基础 25% |###################0 码力 | 36 页 | 3.95 MB | 1 年前3
3 Python的NLP实战分享 如何实现合同风险预测模型 藤井美娜Python的NLP实战分享 如何实现合同风险预测模型? GVA TECH Co., Ltd 藤井美娜 自我介绍 2% |# | self-introduction • Machine Learning Engineer / Data Scientist • GVA TECH的人工智能法律服务AI-CON的多语言系统 开发负责人 inazo18 藤井美娜 目录 CONTENTS CONTENTS 1. Python NLP 入门 2. 多语言NLP攻略 3.“合同风险预测模型”实战经验分享 4. 总结 5% |### | today’s topic 1 Python NLP 入门 简单介绍自然语言处理的流程和使用corpus的EDA方法。 8% |##### | section1 NLP基础 11% |####### | section1 收集语料 前处理 分词 收集语料 前处理 分词 向量化 (Vectorization) 机器学习模型 各种OUTPUT 语义解析 NLP基础 19% |################ | section1 收集语料 前处理 分词 向量化 机器学习模型 语义解析 有时候会把语义分析的结果feature, 放进机器学习模型里。 各种OUTPUT EDA NLP基础 23% |###################0 码力 | 33 页 | 1.67 MB | 1 年前3
PyConChina2022-杭州-ARM芯片的Python+AI算力优化-朱宏林ARM 芯片的 Python + AI 算力优化 主讲人: 朱宏林 – 阿里云程序语言与编译器团队 简介 • 当今开发者们大量使用 Python 语言编写的 AI 程序。过去这些程序总跑在 GPU 或者 x86 架构的 CPU 上。然而综合考虑到功耗、成本、性能等因素,云厂商们开始建设 ARM 架构的服务平台,如 何整合 Python + AI 的相关软件并使其在该平台上发挥最高的性能成为了工程师们关注的焦点。 用 ARM 架构新提供的矩阵扩展对 bf16 类型的 矩阵乘法计算进行优化,该优化将纯矩阵乘法的运算速度提升 3 倍以上,对深度学习推理任务性能 提升明显。目前,该成果已经被集成进 OpenBLAS 和 PyTorch 中。 • 本次演讲,将向大家介绍我们在倚天 710 ARM 芯片上开展的 Python + AI 优化工作,以及在 ARM 云平台上部署 Python + AI 任务的最佳实践。 Conv、Linear、Transformers 来源: Why GEMM is at the heart of deep learning, Pete Warden Convolution • AlexNet 模型推理各个层计算比例 • 86.1% • 2.6% 来源: Learning Semantic Image Representations at a Large Scale, Yangqing Jia0 码力 | 24 页 | 4.00 MB | 1 年前3
Flask入门教程1.14 1.15 目录 简介 前言 第 1 章:准备工作 第 2 章:Hello, Flask! 第 3 章:模板 第 4 章:静态文件 第 5 章:数据库 第 6 章:模板优化 第 7 章:表单 第 8 章:用户认证 第 9 章:测试 第 10 章:组织你的代码 第 11 章:部署上线 小挑战 后记 2 Flask 入门教程 这是一本 Flask 入门教程,提供了入门 的个人主页了解更多关于我的信息。 目录 前言 第 1 章:准备工作 第 2 章:Hello, Flask! 第 3 章:模板 第 4 章:静态文件 第 5 章:数据库 第 6 章:模板优化 第 7 章:表单 第 8 章:用户认证 第 9 章:测试 第 10 章:组织你的代码 第 11 章:部署上线 小挑战 后记 版权信息 书名:Flask 入门教程 副书名:使用 Python 查看示例程序的在线 Demo。 本书特点 前言 5 基于 Flask 最新的 1.0.2 版本 使用一个 Watchlist 程序作为示例 复原完整的开发流程 只提供入门所需的最少信息 优化术语解释,更容易理解 阅读方法 本书复原了编写这个 Watchlist 程序的完整流程,包括每一行代码块,每一个需要 执行的命令。在阅读时,你需要自己输入每一个代码和命令,检查输出是否和书中0 码力 | 127 页 | 7.62 MB | 1 年前3
Hello 算法 1.1.0 Python版10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 10.5 重识搜索算法 . . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 hello‑algo.com 15 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1 所示。 表 1‑1 将数据结构与算法类比为拼装积木 数据结构与算法 拼装积木 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得说明的是,数据结 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台0 码力 | 364 页 | 18.42 MB | 1 年前3
Hello 算法 1.0.0 Python版10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 10.5 重识搜索算法 . . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 hello‑algo.com 15 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1 所示。 表 1‑1 将数据结构与算法类比为拼装积木 数据结构与算法 拼装积木 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得说明的是,数据结 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台0 码力 | 362 页 | 17.54 MB | 1 年前3
Hello 算法 1.0.0b5 Python版10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 10.5 重识搜索算法 . . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 hello‑algo.com 14 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1 所示。 表 1‑1 将数据结构与算法类比为积木 数据结构与算法 拼装积木 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得说明的是,数据结构 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样我们才能将各种算法进行对比,从而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台0 码力 | 361 页 | 30.64 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Python 版10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 10.5 重识搜索算法 . . . 我们按照说明书一步步操作,就能组装出精美的积木模型。 第 1 章 初识算法 www.hello‑algo.com 15 图 1‑5 拼装积木 两者的详细对应关系如表 1‑1 所示。 表 1‑1 将数据结构与算法类比为拼装积木 数据结构与算法 拼装积木 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得说明的是,数 时间效率:算法运行时间的长短。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台0 码力 | 364 页 | 18.43 MB | 10 月前3
共 168 条
- 1
- 2
- 3
- 4
- 5
- 6
- 17













