积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(429)云计算&大数据(212)综合其他(155)Python(137)数据库(114)系统运维(104)Weblate(90)Go(55)PyWebIO(48)前端开发(47)

语言

全部中文(简体)(969)英语(53)中文(简体)(16)日语(3)西班牙语(2)zh(2)JavaScript(1)法语(1)zh-cn(1)

格式

全部PDF文档 PDF(881)其他文档 其他(148)PPT文档 PPT(30)DOC文档 DOC(2)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • 综合其他
  • Python
  • 数据库
  • 系统运维
  • Weblate
  • Go
  • PyWebIO
  • 前端开发
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 日语
  • 西班牙语
  • zh
  • JavaScript
  • 法语
  • zh-cn
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Oracle 和 MySQL 性能优化感悟

    移动APP性能监测实践(iOS篇) 杨凯 杨凯 杨凯@听云 iOS研发工程师 yangkai@tingyun.com 关于APM APM的终极使命 APM价值的直接体现 监测的根本在数据获取 监控 技术 NSURLProtocol Method swizzling Isa swizzling Isa swizzling+NSProxy Others NSURLProtocol
    0 码力 | 19 页 | 3.82 MB | 1 年前
    3
  • pdf文档 Go性能优化概览-曹春晖

    业务性能优化概览 By Xargin 《Go 语⾔⾼级编程》合著者 Go contributor ⽬ 录 优化的前置知识 01 ⽣产环境的优化 02 Continuous profiling 03 优化的前置知识 第⼀部分 Latency numbers every programmer should know https://colin-scott.github.io/p go#L930 内存占⽤过⾼-堆分配导致内存过⾼ https://github.com/golang/go/pull/42036#issuecomment-715046540 怎么样说服官⽅接受性能优化的 PR 内存占⽤过⾼-goroutine 数量太多导致内存占⽤⾼ 这些内存的构成部分: 1. Goroutine 栈占⽤的内存(难优化,⼀条 tcp 连接⾄少对应⼀个 goroutine)
    0 码力 | 40 页 | 8.69 MB | 1 年前
    3
  • pdf文档 APISEVEN 和Kong EE 的性能评测

    APISEVEN和KongEE的性能评测--GigaOm ⾼性能API管理测试 产品评估:API7和Kong企业版 1-摘要3 2-云上的API管理5 API76 图1.API7技术架构7 Kong企业版7 3-GigaOmAPI负载测试设置9 API压⼒测试9 测试环境10 单节点10 环境清单10 软件版本信息11 应⽤程序开发,且能降低计算成本的开销。 更重要的是,许多组织也依赖API和微服务来实现⾼性能和可⽤性。在本⽂中,我们将“⾼性能”定义 为每秒负载超过1000个交易且在整个API环境中最⼤延迟⼩于30毫秒。对公司⽽⾔,对性能的需求和 对管理的需求⼀样,因为公司依靠API交易速率来跟上业务发展速度。 API管理解决⽅案不能成为性能瓶颈。许多公司都在寻找跨多个API端点的负载均衡和⾼交易量吞吐的 解决⽅案 解决⽅案。如果业务每秒有1000个交易,⼀个⽉内就会有30亿次API调⽤。拥有⼤流量的公司通常每 ⽉API调⽤次数超过100亿次。因此,在选择API管理解决⽅案时,性能是⼀个关键因素。 在本⽂中,我们展⽰了使⽤2个全⽣命周期API管理平台完成的性能测试结果:API7和Kong企业版 (KongEE)。 在我们的单节点设置中,API7所有的压⼒测试结果都优于KongEE。在每秒10,000个请求的情况下,
    0 码力 | 14 页 | 1.11 MB | 1 年前
    3
  • pdf文档 4 Python机器学习性能优化

    Python机器学习性能优化 以BERT服务为例例,从1到1000 刘欣 ⽬目录 CONTENTS 1. 优化的哲学 2. 了解你的资源 3. 定位性能瓶颈 4. 动⼿优化 1. 优化的哲学 "There ain't no such thing as a free lunch" Ahmdal’s Law • 系统整体的优化,取决于热点部分的占⽐比和该部分的加速程度 No Free Flask Production Server • gunicorn 多进程解决多核利利⽤用率问题 • gevent 协程替代多线程⽹网络模型 • 更更⾼高效的序列列化lib 3 定位性能瓶颈 Profile before Optimizing Python Profilers • time.time() • cProfile • line profiler • pyflame 放个截图 cProfile • 倒序打印 & graph pyflame • 插桩 or 采样 • 放个flamegraph • 开源地址 wrk • 制造压⼒力力 • 挖掘整体性能瓶颈 • 实现⾮非常精妙的压⼒力力⼯工具,强烈烈安利利(要不不要写个py binding) 4 动⼿优化 多线程服务器的问题 • 每个请求单独进GPU,利利⽤用率不不⾼高 • ⼤大量量请求并⾏行行,CUDA会爆
    0 码力 | 38 页 | 2.25 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    性能优化 之 无分支编程 Branchless Programming by 彭于斌( @archibate ) 两种代码写法:分支 vs 三目运算符 两种使用方式:排序 vs 不排序 测试结果(均为 gcc -O3 ) 测试结果可视化 图表比较:分支 vs 无分支 分支 无分支 0 0.01 0.02 0.03 耗时(越低越好) 乱序 有序 • 传统的分支方法实现的 uppercase ,对于 排序过的数据明显比乱序时高效。 • 无分支的方法对于乱序和有序的数据一样 高效,性能吊打了传统的分支方法。 • 对于传统分支的做法,为什么排序了的更 高效?既然无分支更高效,我要怎样优化 才能让我的程序变成无分支的呢?那就来 看本期性能优化专题课吧! 分支预测成败对性能的影响 排序为什么对有分支的版本影响那么大 为什么需要流水线 • 为了高效, CPU 的内部其实是一个流水 、 90% 、 99% 直到有一次, 突然出现了一次分支 B 成功的案例, CPU 瞬间被打脸!不得不浪费 99% 已经填满 A 数 据的流水线清空,重启整个流水线,这就是分支预测失败,他是导致分支性能低下的罪魁祸 首。不过被打了一次脸的 CPU 还不敢相信,觉得这可能只是碰巧,下一次还是会执行分 支 A 的吧,所以他只是把分支 A 的比例下调到 80% ,直到第二次又被打脸,下调到最初 的起点 50%……
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • pdf文档 Apache APISIX 微服务⽹关性能架构解析

    Apache APISIX 微服务⽹网关性能架构解析 --by Yuansheng 王院⽣生 通过写书开始交朋友 《OpenResty 最佳实践》 今年年 3 ⽉月和温铭创办深圳⽀支流科 技,专注微服务的开源技术公司。 Apache APISIX PPMC 成员。 公司刚起步,希望⼤大家⽀支持。 开源,开⼼心 开源,开⼼心 理理想主义者,想活的有理理想 Yuansheng why? ⾏行行业⽼老老⼤大:⼤大多基于 Java + JS,性能差,不不⽀支持⼆二 次开发。⽐比如 Apigee、3Scale、Amazon 等。 ⾏行行业远⻅见者:多基于 OpenResty + Golang,少数开 源,⽐比如:Tyk、Kong 等,代码量量较重。 Apache APISIX 机会:轻巧 + 极致性能 + 热插件 宣布开源 CNCF ⾸首个商业⽤用户 ⽣生产⽤用户上线 核⼼心代码量量,3892 ⾏行行 • 极致的动态转发性能 • 平均请求延迟: 740 us • 插件热加载/卸载 • 允许插件挂载任何阶段 • 路路由⾃自身也是插件 Apache APISIX ⾃自豪 • ⽀支持 ARM64 • 完整⽀支持 IPv6 • 物联⽹网 MQTT 协议 • 基于 OpenResty / Tengine • 极致性能 jsonschema • ASF
    0 码力 | 41 页 | 15.62 MB | 1 年前
    3
  • pdf文档 对 Go 程序进行可靠的性能测试

    对 Go 程序进行可靠的性能测试 Changkun Ou https://changkun.de/s/gobench/ Go 夜读系列 |talkgo.org|Talk Go|第 83 期 March 26, 2020 # Go 1.13 / 1.14 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 主要内容 ● 可靠的测试环境 ● benchstat 对代码块进行性能调优 ○ 例2: Benchmark 的正确性分析 ○ 例3: 其他的影响因素 ● 假设检验的原理 ● 局限与应对措施 ● 总结 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 教科书式的性能测试方法论 3 在《Software Testing: Principles and Practices》一书中归纳的性能测试方法论: 搜集需求 2. 编写测试用例 3. 自动化性能测试用例 4. 执行性能测试用例 5. 分析性能测试结果 6. 性能调优 7. 性能基准测试(Performance Benchmarking) 8. 向客户推荐合适的配置 可靠的测试环境 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 什么是可靠的性能基准测试环境 5 影响测试环境的软硬件因素
    0 码力 | 37 页 | 1.23 MB | 1 年前
    3
  • pdf文档 2.7 Golang与高性能DSP竞价系统

    专业DSP解决⽅方案供应商 Golang与⾼高性能DSP竞价系统 By @QLeelulu 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved • RTB: Real-time Bidding,实时竞价,允许⼲⼴广告买家根据 活动⺫⽬目标、⺫⽬目标⼈人群以及费⽤用⻔门槛等因素对每⼀一个⼲⼴广告 及每次⼲⼴广告展⽰示的费⽤用进⾏行竞价。 http包的HelloWorld性能测试 为什么选择Golang Via: http://www.cnblogs.com/QLeelulu/archive/2012/08/12/2635261.html 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved • ⾼高性能、天⽣生并发⽀支持 • 性能敏感的模块可以直接使⽤用C编写(当时是这么认为的) 性能敏感的模块可以直接使⽤用C编写(当时是这么认为的) • 编译为本地机器码,部署⽅方便 • 快速上⼿手,学习成本低 • 标准库基本够⽤用 • 带GC(当时不了解GC的性能问题) • ⾃自带单元测试、性能测试、性能分析⼯工具 • 开发效率不低 为什么选择Golang 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved
    0 码力 | 51 页 | 5.09 MB | 1 年前
    3
  • pdf文档 IPC性能极致优化方案-RPAL落地实践

    IPC性能极致优化方案-RPAL落地实践 谢正尧 字节跳动 研发工程师 目 录 方案诞生的背景 01 全进程地址空间共享与保护 02 用户态进程切换 03 高效的Go Event Poller 04 RPC框架Kitex集成 05 性能收益与业务展望 06 方案诞生的背景 第一部分 方案诞生的背景 几种常见的同机通信场景: 1. 微服务合并部署(亲和性部署、sidecar 常见的本地通信方案:回环 IP、UDS、共享内存IPC 方案诞生的背景 以性能较优的 IPC 方案 share memory ipc 为例分析性能瓶颈: 注:方案 github 地址:https://github.com/cloudwego/shmipc-go 方案诞生的背景 方案诞生的背景 IPC 的性能瓶颈有哪些: 1. 系统特权级切换; 2. 异步线程唤醒/休眠(事件通知); 异步线程唤醒/休眠(事件通知); 3. 数据拷贝(序列化/反序列化); 方案诞生的背景 能不能把库函数调用的高性能优势做到 IPC 里面,降低进程间的事件通知和数据拷贝开销? 以go-go微服务 RPC 通信场景为例,该问题可以抽象为,如何高效地在两个 go runtime 间进行函数调用? 方案诞生的背景 基于以上问题,我们最终引入了 RPAL(Run Process As Library) 方案,基于跨进程虚拟地址
    0 码力 | 39 页 | 2.98 MB | 1 年前
    3
  • pdf文档 高性能高可用机票实时搜索系统

    ⾼性能⾼可⽤机票实时搜索系统 去哪⼉⺴ 梁启康 议题 系统诉求 海海量量数据 设计思路路 搜索框架 报价引擎 待解问题 系统诉求 • 全⽹网价最低 • 航线报价最全 • 实时性最好 • 产品最丰富 • 预定最流畅 ⾯面临问题 航班舱位时刻变动 供应商规则调整密集 航司政策各有不不同 供应商的office权限不不⼀一致 运价规则变化繁多 GDS数据成本不不菲 • Date • Integer • Set • byte, byte[] • short, short[] • int, int[] • obj pool 报价引擎 — 性能优化 • 异步、并⾏行行、⽆无锁化 • 剪枝 • 空间换时间 • 缩短对象驻留留内存时间,减少gc次数,优化单机吞吐 • 数据交换采⽤用protobuf + gzip处理理 •
    0 码力 | 26 页 | 1.94 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
OracleMySQL性能优化感悟Go概览春晖APISEVENKongEE评测Python机器学习C++高性高性能并行编程课件ApacheAPISIX服务架构解析程序进行可靠测试2.7GolangDSP竞价系统IPC极致方案RPAL落地实践可用机票实时搜索
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩