积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(405)云计算&大数据(212)综合其他(179)Python(124)数据库(102)Weblate(90)系统运维(86)OpenShift(72)区块链(48)PyWebIO(48)

语言

全部中文(简体)(952)英语(54)中文(简体)(10)西班牙语(1)法语(1)

格式

全部PDF文档 PDF(842)其他文档 其他(156)PPT文档 PPT(25)DOC文档 DOC(3)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • 综合其他
  • Python
  • 数据库
  • Weblate
  • 系统运维
  • OpenShift
  • 区块链
  • PyWebIO
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 西班牙语
  • 法语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 常见Redis未授权访问漏洞总结

    承担。 小维 Redis未授权访问漏洞 漏洞简介以及危害 Redis 默认情况下,会绑定在 0.0.0.0:6379,如果没有进行采用相关的策略,比如添加防火墙规则 避免其他非信任来源 ip 访问等,这样将会将 Redis 服务暴露到公网上,如果在没有设置密码认证(一 般为空)的情况下,会导致任意用户在可以访问目标服务器的情况下未授权访问 Redis 以及读取 Redis 的数据。攻击者在未授权访问 Redis 的情况下,利用 Redis 自身的提供的config 命令,可以进行写文件 操作,攻击者可以成功将自己的ssh公钥写入目标服务器的 /root/.ssh 文件夹的authotrized_keys 文件 中,进而可以使用对应私钥直接使用ssh服务登录目标服务器、添加计划任务、写入Webshell等操作。 漏洞利用 环境介绍 环境搭建 常见的未授权访问漏洞: Redis 未授权访问漏洞 MongoDB 未授权访问漏洞 Jenkins 未授权访问漏洞 Memcached 未授权访问漏洞 JBOSS 未授权访问漏洞 VNC 未授权访问漏洞 Docker 未授权访问漏洞 ZooKeeper 未授权访问漏洞 Rsync 未授权访问漏洞 Atlassian Crowd 未授权访问漏洞 CouchDB 未授权访问漏洞 Elasticsearch
    0 码力 | 44 页 | 19.34 MB | 1 年前
    3
  • pdf文档 Rust并行编译的挑战与突破

    Rust并行编译的挑战与突破 李原 2022年5月28日 • 相关浅谈 • Rust并行编译的挑战与突破 • 从并行编译到并行程序设计 • Rust社区与并行编译 目录 相关浅谈 Rust编译速度之殇 编译器设计造成编译速度缓慢 · 单态化 · 借用检查 · 宏展开 · MIR优化 ... Rust规模编译速度慢于C++ Rust编译速度之殇 提升编译效率成为近年社区重点工作 提升编译效率成为近年社区重点工作 并行编译或成下一代编译效率突破利器 2017-2021,Rust编译速度已提升一倍以上 Rust社区编译器性能工作组 Rust编译器并行化 Cargo多crate并行 二进制生成并行 更多更好的并行化? Rust编译器架构 语法树生成 宏展开 命名解析 泛型解析 类型检查 借用检查 单态化 二进制生成 增量编译系统 底层数据 结构 Rust语言编译器结构总览 考虑内部编译流程并行化 考虑内部编译流程并行化 Rust并行并发 编译时线程安全检查 一些常见线程安全数据结构 常用Rust并行并发库 Rust并行并发 增加程序复杂度 线程安全数据结构造成效率损失 Mutex与RwLock rustc profileing 数据 · 代码复杂度及健壮性 · benchmark资源限制 · profileing成本 ... 收益 > 代价? Rust并行编译的挑战与突破
    0 码力 | 25 页 | 4.60 MB | 1 年前
    3
  • pdf文档 通过Oracle 并行处理集成 Hadoop 数据

    白皮书 2011 年 1 月 通过 Oracle 并行处理集成 Hadoop 数据 1 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 引言 本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 种访问方法的实现。 2 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 外部 Hadoop 数据的访问方法 要从 Oracle 数据库里访问某个文件系统中的外部文件或外部数据,最简单的方法莫过于使用 外部表。请参阅这里了解外部表。 外部表以表的形式展示存储在文件系统中的数据,并且可在 SQL 查询中完全透明地使用。 因此,可以考虑用外部表从 Oracle 数据库中直接访问 HDFS(Hadoop 文件系统)中存储的 数
    0 码力 | 21 页 | 1.03 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    TBB 开启的并行编程之旅 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 第 0 章:从并发到并行 摩尔定律:停止增长了吗?
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • pdf文档 在 JavaScript 中的并行语言特性-周爱民

    在JavaScript中的 并行语言特性 周爱民 @aimingoo https://github.io/aimingoo 上海南潮信息科技有限公司/ruff.io R/W {range} {range} {range} R W Lock Unlock 声明一个变量/标识 符,使之在确定的上 下文中占有存储位 置。 有变量 1 使存储位置中有值。 绑定值 3
    0 码力 | 41 页 | 8.61 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器

    m) • 由于刚刚说了, map 真正的“元素类型”是 K-V 对,所以这里的 auto 如果不省略应该是 : • for (pair tmp: m) • 如果要单独访问 K 或者 V 怎么办?我们看一下 pair 的定义,里面只有两个成 员: • struct pair { • T1 first; T2 second; • }; }; map 的遍历:用 C++17 range-based loop • 所以 for (auto tmp: m) 这里 tmp 的类型是 pair 。 • 如果要单独访问 K 或者 V 怎么办?我们看一下 pair 的定义,里面只有两个成 员: • struct pair { • T1 first; • T2 second; } map 的遍历:用 C++17 range-based loop • 所以 for (auto tmp: m) 这里 tmp 的类型是 pair 。 • 如果要单独访问 K 或者 V 怎么办?我们看一下 pair 的定义,里面只有两个成 员: • struct pair { • T1 first; • T2 second;
    0 码力 | 90 页 | 8.76 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    s/104060927 环境变量的访问方式: $ENV{xx} • 用 ${xx} 访问的是局部变量,局部变量服从刚刚所说的父子模块传播规则。 • 而还有一种特殊的方式可以访问到系统的环境变量( environment variable ): $ENV{xx} 。 • 比如 $ENV{PATH} 就是获取 PATH 这个环境变量的值。 缓存变量的访问方式: $CACHE{xx} • 此外,还可以用 此外,还可以用 $CACHE{xx} 来访问缓存里的 xx 变量。 • 缓存变量和环境变量是不论父子模块都共用的,没有作用域一说。 ${xx} 找不到局部变量时,会自动去找缓存变量 • ${xx} 当找不到名为 xx 的局部变量时,就会去在缓存里查找名为 xx 的缓存变量。 • 因此这里 CMAKE_BUILD_TYPE 虽然在代码里没被 set ,但是他被 -D 参数固定在缓存 里了。
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • pdf文档 并行不悖- OLAP 在互联网公司的实践与思考

    1 并行不悖 – OLAP 在互联网公司的实践与思考 赵飞祥 2 Greenplum现状说明 三 Greenplum体系架构 二 数据仓库体系架构 一 Greenplum开发规范 五 Greenplum运维体系 四 Greenplum扩展规划 六 3 数据仓库体系架构 业务数据与数据使用归类 时间维度:过去 - 现在 - 未来 (数据的生命周期) • “现在”的数据 —— 数据仓库体系架构 数据流转过程 • 1 业务数据的产生 —— OLTP • 2 业务数据的中转 —— ETL服务器 • 3 数据的存储和计算 —— OLAP集群 • 4 结果数据的展现 —— 数据集市 • 5 访问接口的封装 —— API接口服务器 • 6 最终数据的显示 —— 前端界面 • 7 结果数据的交互 —— OLTP,趋势分析 • 8 OLAP数据流转 —— dbsync平台 7 数据仓库体系架构 Ø MPP ShareNothing 海量并行处理+完全无共享 Ø cpu计算能力 Ø 数据从Disk上的I/O吞吐性能 Ø master管理节点 Ø segment数据节点 • greenplum的核心功能 Ø 无共享MPP Ø 多态存储 Ø 高效数据加载 (gpfdist+外部表,每小时4TB+) Ø 分布分区 Ø 数据压缩 Ø 外部访问 15 Greenplum现状说明 三 Greenplum体系架构
    0 码力 | 43 页 | 9.66 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    原来,三重尖括号里的第二个参数决定着启动 kernel 时所用 GPU 的线程数量。 • GPU 是为并行而生的,可以开启很大数量的 线程,用于处理大吞吐量的数据。 获取线程编号 • 可以通过 threadIdx.x 获取当前线程的编 号,我们打印一下试试看。 • 这是 CUDA 中的特殊变量之一,只有在 核函数里才可以访问。 • 可以看到线程编号从 0 开始计数,打印出 了 0 , 1 , 2 。这也是我们指定了线程数 之前执行了 ,这是因为板块之间是高度并行的,不保 证执行的先后顺序。线程之间也是,这里 线程打印顺序没乱,不过是碰巧小于 32 而 已。 注意不要混淆 • 当前线程在板块中的编号: threadIdx • 当前板块中的线程数量: blockDim • 当前板块的编号: blockIdx • 总的板块数量: gridDim • 线程 (thread) :并行的最小单位 • 板块 (block) :指整个任务,包含若干个板块 • 从属关系:线程<板块<网格 • 调用语法: <<>> 区分板块和线程有点麻烦?“扁平化”他们! • 你可能觉得纳闷,既然已经有线程可以并行了 ,为什么还要引入板块的概念?稍后会说明区 分板块的重要原因。 • 如需总的线程数量: blockDim * gridDim • 如需总的线程编号: blockDim * blockIdx
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    memory-bound • 通常来说,并行只能加速计算的部分,不能加速内存读写的部分 。 • 因此,对 fill 这种没有任何计算量,纯粹只有访存的循环体,并 行没有加速效果。称为内存瓶颈( memory-bound )。 • 而 sine 这种内部需要泰勒展开来计算,每次迭代计算量很大的 循环体,并行才有较好的加速效果。称为计算瓶颈( cpu- bound )。 • 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 。 浮点加法的计算量 • 冷知识:并行地给浮点数组每个元素做一次加法反而更慢。 • 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 。 • 小彭老师经验公式: 1 次浮点读写 ≈ 8 次浮点加法 • 如果矢量化成功( SSE ): 1 次浮点读写 ≈ 32 次浮点加法 • 如果 CPU 符合小彭老师的经验公式。 • “right” 和“ wrong” 指的是分支预测是否成功。 多少计算量才算多? • 看右边的 func ,够复杂了吧?也只是勉勉强强超过一 点内存的延迟了,但在 6 个物理核心上并行加速后, 还是变成 mem-bound 了。 • 加速比: 1.36 倍 • 应该达到 6 倍(物理核心数量)才算理想加速比。 加速曲线 • funcA 用了 2 核就饱和。 • funcB
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
常见Redis授权访问漏洞总结Rust并行编译挑战突破通过Oracle处理并行处理集成Hadoop数据C++高性性能高性能编程优化课件06JavaScript语言特性爱民1711并行不悖OLAP互联联网互联网公司实践思考0807
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩