Dynamic Model in TVM
rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Models with models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim in typing ● Use shape function to compute the type at runtime ● Virtual input_name = "data" input_shape = [tvm.relay.Any(), 3, 224, 224] dtype = "float32" block = get_model('resnet50_v1', pretrained=True) mod, params = relay.frontend.from_mxnet(block, shape={input_name:0 码力 | 24 页 | 417.46 KB | 5 月前3Model and Operate Datacenter by Kubernetes at eBay (提交版)
Model and Operate Datacenter by Kubernetes at eBay 辛肖刚, Cloud Engineering Manager, ebay 梅岑恺, Senior Operation Manager, ebay Agenda About ebay Our fleet Kubernetes makes magic at ebay Model + Controller Controller How we model our datacenter Operation in large scale Q&A About ebay 177M Active buyers worldwide $22.7B Amount of eBay Inc. GMV $2.6B Reported revenue 62% International revenue 1.1B Kubernetes Onboard Provision Configuration Kubernetes You need onboard something from nothing! Let’s model a datacenter running Kubernetes Onboard Provision Configuration Kubernetes After you define your0 码力 | 25 页 | 3.60 MB | 1 年前3Distributed Ranges: A Model for Building Distributed Data Structures, Algorithms, and Views
0 码力 | 127 页 | 2.06 MB | 5 月前3The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr
The Future of Cloud Native Applications with Open Application Model (OAM) and Dapr @markrussinovich Application models Describes the topology of your application and its components The way developers services and data stores Programming models Distributed Application Runtime (Dapr) Open Application Model (OAM) https://oam.dev State of Cloud Native Application Platforms Kubernetes for applications of concerns Application focused Application focused Container infrastructure Open Application Model Service Job Namespace Secret Volume Endpoint ConfigMap VolumeAttach CronJob Deployment0 码力 | 51 页 | 2.00 MB | 1 年前3LSTM-Layer使用
vec] ▪ h/c: [num_layer, b, h] ▪ out: [seq, b, h] nn.LSTM nn.LSTMCell ▪ __init__ LSTMCell.forward() ▪ ht, ct = lstmcell(xt, [ht_1, ct_1]) ▪ xt: [b, vec] ▪ ht/ct: [b, h] Single layer Two Layers 下一课时0 码力 | 11 页 | 643.79 KB | 1 年前3RNN-Layer使用
RNN Layer使用 主讲人:龙良曲 Folded model feature ??@??ℎ + ℎ?@?ℎℎ [0,0,0 … ] x: ??? ???, ????ℎ, ??????? ??? ????ℎ, ??????? ??? @[ℎ????? ???, ??????? ???]?+ ????ℎ, ℎ????? ??? @ ℎ????? ???, ℎ????? ??? ? layers, b, h dim] ▪ out: [seq len, b, h dim] Single layer RNN feature ??@??ℎ 1 + ℎ? 1@?ℎℎ 1 [0,0,0 … ] ℎ? 1@??ℎ 2 + ℎ? 2@?ℎℎ 2 [0,0,0 … ] 2 layer RNN [T, b, h_dim], [layers, b, h_dim] nn.RNNCell0 码力 | 15 页 | 883.60 KB | 1 年前3C++ Memory Model: from C++11 to C++23
Memory Model C++11 – C++23About Me: alex.dathskovsky@speedata.io www.linkedin.com/in/alexdathskovsky https://www.cppnext.comAlex Dathskovsky | alex.dathskovsky@speedata.io | www.linkedin.com/in/a0 码力 | 112 页 | 5.17 MB | 5 月前3DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
Efficient Mixture-of-Experts Language Model DeepSeek-AI research@deepseek.com Abstract We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models. The model checkpoints are available at h t t p s : / / g i t h u b . c o m / d e e p s e e k - a i / D e e p Work 21 A Contributions and Acknowledgments 27 B DeepSeek-V2-Lite: A 16B Model Equipped with MLA and DeepSeekMoE 29 2 B.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 52 页 | 1.23 MB | 1 年前3keras tutorial
..................................................................................... 11 Multi-Layer Perceptron ...................................................................................... ........................................................................................... 17 Model ................................................................................................. ........................................................... 17 Keras iv Layer ....................................................................................................0 码力 | 98 页 | 1.57 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures
in ANALOG magazine (1991) So far, we have discussed generic techniques which are agnostic to the model architecture. These techniques can be applied in NLP, vision, speech or other domains. However, owing challenges. What good is a model that cannot be deployed in practical applications! Efficient Architectures aim to improve model deployability by proposing novel ways to reduce model footprint and improve running on mobile and edge devices. We have also set up a couple of programming projects for a hands-on model optimization experience using these efficient layers and architectures. Let’s start our journey with0 码力 | 53 页 | 3.92 MB | 1 年前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100
相关搜索词
DynamicModelinTVMandOperateDatacenterbyKubernetesateBay提交DistributedRangesforBuildingDataStructuresAlgorithmsViewsTheFutureofCloudNativeApplicationswithOpenApplicationOAMDapr深度学习PyTorch入门实战52LSTMLayer使用48RNNC++Memoryfrom11to23DeepSeekV2StrongEconomicalEfficientMixtureExpertsLanguagekerastutorialDeepLearningBookEDLChapterArchitectures