积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(198)Julia(87)云计算&大数据(65)数据库(62)区块链(57)综合其他(45)Python(35)TiDB(31)Django(30)Blender(29)

语言

全部英语(285)中文(简体)(77)中文(繁体)(20)英语(4)日语(2)

格式

全部PDF文档 PDF(341)其他文档 其他(47)PPT文档 PPT(1)
 
本次搜索耗时 0.341 秒,为您找到相关结果约 389 个.
  • 全部
  • 后端开发
  • Julia
  • 云计算&大数据
  • 数据库
  • 区块链
  • 综合其他
  • Python
  • TiDB
  • Django
  • Blender
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 日语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 • Ensure result correctness • reconfiguration mechanism often relies on fault-tolerance mechanism • State re-partitioning and migration • minimize communication • keep duration short
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring

    and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 3/24: Exactly-once fault-tolerance in Apache Flink ??? Vasiliki Kalavri | Boston University 2020 Some slides in this lecture have org/smash/get/diva2:1240814/FULLTEXT01.pdf 2 ??? Vasiliki Kalavri | Boston University 2020 Fault-tolerance approaches recap 3 Vasiliki Kalavri | Boston University 2020 Upstream Backup Upstream nodes
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    () 72 / 79 Fault Tolerance (1/2) ▶ Fault tolerance in Spark • RDD re-computation ▶ Fault tolerance in Storm • Tracks records with unique IDs. • Operators send processed. • Records are dropped from the backup when the have been fully acknowledged. ▶ Fault tolerance in Flink • More coarse-grained approach than Storm. • Based on consistent global snapshots (inspired overhead, stateful exactly-once semantics. 73 / 79 Fault Tolerance (1/2) ▶ Fault tolerance in Spark • RDD re-computation ▶ Fault tolerance in Storm • Tracks records with unique IDs. • Operators send
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.21.1

    Series.reindex(), DataFrame.reindex(), Index.get_indexer() now support list-like argu- ment for tolerance. (GH17367) 1.2.2 Backwards incompatible API changes 1.2.2.1 Dependencies have increased minimum (GH15676) • Bug in pd.merge_asof() where left_index/right_index together caused a failure when tolerance was specified (GH15135) • Bug in DataFrame.pivot_table() where dropna=True would not drop all-NaN parsing (GH7626) • Bug in pd.merge_asof() could not handle timezone-aware DatetimeIndex when a tolerance was specified (GH14844) • Explicit check in to_stata and StataWriter for out-of-range values when
    0 码力 | 2207 页 | 8.59 MB | 1 年前
    3
  • pdf文档 PyMuPDF 1.24.2 Documentation

    two red points and setting clip accordingly. cluster_drawings(clip=None, drawings=None, x_tolerance=3, y_tolerance=3) Cluster vector graphics (synonyms are line-art or drawings) based on their geometrical output of Page.get_drawings() and joins paths whose path["rect"] are closer to each other than some tolerance values (given in the arguments). The result is a list of rectangles that each wrap things like tables • x_tolerance (float) – find_tables(clip=None, strategy=None, vertical_strategy=None, horizontal_strategy=None, vertical_lines=None, horizontal_lines=None, snap_tolerance=None, snap_x_tolerance=None
    0 码力 | 565 页 | 6.84 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.17.0

    object In [56]: s.drop_duplicates(keep=False) Out[56]: 2 C 5 D dtype: object • Reindex now has a tolerance argument that allows for finer control of Limits on filling while reindexing (GH10411): In [57]: method='nearest', ....: tolerance=0.2) ....: Out[58]: t x 0.1 2000-01-01 0 1.9 2000-01-03 2 3.5 NaT NaN When used on a DatetimeIndex, TimedeltaIndex or PeriodIndex, tolerance will coerced into a Timedelta This allows you to specify tolerance with a string: In [59]: df = df.set_index('t') In [60]: df.reindex(pd.to_datetime(['1999-12-31']), ....: method='nearest', ....: tolerance='1 day') ....: Out[60]:
    0 码力 | 1787 页 | 10.76 MB | 1 年前
    3
  • pdf文档 钟阳红-Apache Ballista Introduction

    Arrow and DataFusion. It’s mainly for interactive queries of low latency. • Support DAG and fault tolerance • Support data exchange • Support different kinds of object stores, like HDFS, S3, Azure, etc Execution DAG State Machine Normal Stage State Machine SQL Execution Fault Tolerance Stage State Machine for Executor Lost SQL Execution Task Assignment Task: each execution assignment (Snowflake) • LRU based retirement • Cache aware scheduling • Consistent hashing tolerance-based work stealing • Currently it’s file-level Data Cache Three rounds cache aware task Scheduling:
    0 码力 | 17 页 | 2.66 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.0

    object In [56]: s.drop_duplicates(keep=False) Out[56]: 2 C 5 D dtype: object • Reindex now has a tolerance argument that allows for finer control of Limits on filling while reindexing (GH10411): In [57]: method='nearest', ....: tolerance=0.2) ....: Out[58]: t x 0.1 2000-01-01 0.0 1.9 2000-01-03 2.0 3.5 NaT NaN When used on a DatetimeIndex, TimedeltaIndex or PeriodIndex, tolerance will coerced into a This allows you to specify tolerance with a string: In [59]: df = df.set_index('t') In [60]: df.reindex(pd.to_datetime(['1999-12-31']), ....: method='nearest', ....: tolerance='1 day') ....: Out[60]:
    0 码力 | 1937 页 | 12.03 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.1

    object In [56]: s.drop_duplicates(keep=False) Out[56]: 2 C 5 D dtype: object • Reindex now has a tolerance argument that allows for finer control of Limits on filling while reindexing (GH10411): In [57]: method='nearest', ....: tolerance=0.2) ....: Out[58]: t x 0.1 2000-01-01 0.0 1.9 2000-01-03 2.0 3.5 NaT NaN When used on a DatetimeIndex, TimedeltaIndex or PeriodIndex, tolerance will coerced into a This allows you to specify tolerance with a string: In [59]: df = df.set_index('t') In [60]: df.reindex(pd.to_datetime(['1999-12-31']), ....: method='nearest', ....: tolerance='1 day') ....: Out[60]:
    0 码力 | 1943 页 | 12.06 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.24.0

    contained a DST transition (GH18885) • Bug in merge_asof() when merging on float values within defined tolerance (GH22981) • Bug in pandas.concat() when concatenating a multicolumn DataFrame with tz-aware data perform any checks on the order of the index. Limits on filling while reindexing The limit and tolerance arguments provide additional control over filling while reindexing. Limit specifies the maximum D, dtype: float64 In contrast, tolerance specifies the maximum distance between the index and indexer values: In [234]: ts2.reindex(ts.index, method='ffill', tolerance='1 day') Out[234]: 2000-01-03 -0
    0 码力 | 2973 页 | 9.90 MB | 1 年前
    3
共 389 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 39
前往
页
相关搜索词
FaulttolerancedemoreconfigurationCS591K1DataStreamProcessingandAnalyticsSpring2020ExactlyoncefaultinApacheFlinkScalableSparkStreamingpandaspowerfulPythondataanalysistoolkit0.21PyMuPDF1.24Documentation0.17钟阳红BallistaIntroduction0.190.24
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩