积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(933)Java(365)Spring(314)Python(237)数据库(108)C++(99)Julia(87)Conan(74)Jupyter(60)综合其他(57)

语言

全部英语(1100)中文(简体)(68)中文(繁体)(20)日语(2)韩语(2)英语(2)

格式

全部PDF文档 PDF(891)其他文档 其他(235)TXT文档 TXT(67)PPT文档 PPT(1)
 
本次搜索耗时 0.639 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Java
  • Spring
  • Python
  • 数据库
  • C++
  • Julia
  • Conan
  • Jupyter
  • 综合其他
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 韩语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 stdx::interval, a library for intervals on totally ordered sets

    stdx::interval, a library for intervals on totally ordered sets Eric Hughes, Meadhbh Hamrick stdx::interval, a library for intervals on totally ordered sets Eric Hughes, Meadhbh Hamrick In brief stdx::interval stdx::interval implements the mathematical sense of an interval on a totally ordered set. The library reasons about intervals as sets, not as interval expressions. The library is header-only and targets as a module for import. The library needs a working accommodation with the concept std::totally_ordered. The unfortunate fact is that this concept does not enforce its stated semantic requirements (so
    0 码力 | 1 页 | 45.14 KB | 5 月前
    3
  • pdf文档 Peering Forward: C++'s Next Decade

    public+virtual or protected+nonvirtual ordered A totally ordered type with operator<=> that implements strong_ordering. Also: weakly_ordered, partially_ordered copyable A type that has copy/move c functions value An ordered basic_value. Also: weakly_ordered_value, partially_ordered_value struct A basic_value with all public members, no virtuals, no custom assignment enum An ordered basic_value with with all public values flag_enum An ordered basic_value with all public values, and bitwise sets/tests union A safe (tagged) union with names (unlike std::variant)51 interface An abstract class having
    0 码力 | 84 页 | 6.21 MB | 5 月前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    pandas 0.25.x In [1]: pd.Categorical([1, 2, np.nan], ordered=True).min() Out[1]: nan pandas 1.0.0 In [47]: pd.Categorical([1, 2, np.nan], ordered=True).min() Out[47]: 1 1.5.9 Default dtype of empty 0.25.x >>> df.resample("2D").agg(lambda x: 'a').A.dtype CategoricalDtype(categories=['a', 'b'], ordered=False) pandas 1.0.0 In [50]: df.resample("2D").agg(lambda x: 'a').A.dtype Out[50]: dtype('O') tz_localize(), DatetimeIndex.tz_localize(), and Series.tz_localize() (GH22644) • Changed the default “ordered” argument in CategoricalDtype from None to False (GH26336) 1.7. Removal of prior version deprecations/changes
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.1

    will preserve these dtypes. (GH18502) In [29]: cat = pd.Categorical(["foo", "bar", "bar", "qux"], ordered=True) In [30]: df = pd.DataFrame({'payload': [-1, -2, -1, -2], 'col': cat}) In [31]: df Out[31]: groupby('payload').first().col.dtype Out[33]: CategoricalDtype(categories=['bar', 'foo', 'qux'], ordered=True) 1.2.7 Incompatible Index type unions When performing Index.union() operations between objects Categorical(['b', None, 'a'], categories=['a', 'b'], ordered=True) Previous behavior In [2]: cat = pd.Categorical(['b', None, 'a'], categories=['a', 'b'], ordered=True) In [3]: cat.argsort() Out[3]: array([1
    0 码力 | 2833 页 | 9.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    will preserve these dtypes. (GH18502) In [29]: cat = pd.Categorical(["foo", "bar", "bar", "qux"], ordered=True) In [30]: df = pd.DataFrame({'payload': [-1, -2, -1, -2], 'col': cat}) In [31]: df Out[31]: groupby('payload').first().col.dtype Out[33]: CategoricalDtype(categories=['bar', 'foo', 'qux'], ordered=True) 1.2.7 Incompatible Index type unions When performing Index.union() operations between objects Categorical(['b', None, 'a'], categories=['a', 'b'], ordered=True) Previous behavior In [2]: cat = pd.Categorical(['b', None, 'a'], categories=['a', 'b'], ordered=True) In [3]: cat.argsort() Out[3]: array([1
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.1

    data: • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously dtype: int64 Note: When the data is a dict, and an index is not passed, the Series index will be ordered by the dict’s insertion order, if you’re using Python version >= 3.6 and Pandas version >= 0.23. will be the lexically ordered list of dict keys. In the example above, if you were on a Python version lower than 3.6 or a Pandas version lower than 0.23, the Series would be ordered by the lexical order
    0 码力 | 3231 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.0

    data: • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously dtype: int64 Note: When the data is a dict, and an index is not passed, the Series index will be ordered by the dict’s insertion order, if you’re using Python version >= 3.6 and Pandas version >= 0.23. will be the lexically ordered list of dict keys. In the example above, if you were on a Python version lower than 3.6 or a Pandas version lower than 0.23, the Series would be ordered by the lexical order
    0 码力 | 3229 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0

    data: • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously 733639 2000-01-10 0.733639 Freq: D, dtype: float64 These methods require that the indexes are ordered increasing or decreasing. Note that the same result could have been achieved using fillna (except dtype: int64 Note: When the data is a dict, and an index is not passed, the Series index will be ordered by the dict’s insertion order, if you’re using Python version >= 3.6 and Pandas version >= 0.23.
    0 码力 | 3091 页 | 10.16 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.4

    data: • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously 733639 2000-01-10 0.733639 Freq: D, dtype: float64 These methods require that the indexes are ordered increasing or decreasing. Note that the same result could have been achieved using fillna (except dtype: int64 Note: When the data is a dict, and an index is not passed, the Series index will be ordered by the dict’s insertion order, if you’re using Python version >= 3.6 and Pandas version >= 0.23.
    0 码力 | 3081 页 | 10.24 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit -1.0.3

    data: • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously 733639 2000-01-10 0.733639 Freq: D, dtype: float64 These methods require that the indexes are ordered increasing or decreasing. Note that the same result could have been achieved using fillna (except dtype: int64 Note: When the data is a dict, and an index is not passed, the Series index will be ordered by the dict’s insertion order, if you’re using Python version >= 3.6 and Pandas version >= 0.23.
    0 码力 | 3071 页 | 10.10 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
stdxintervallibraryforintervalsontotallyorderedsetsPeeringForwardC++NextDecadepandaspowerfulPythondataanalysistoolkit1.00.251.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩