积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(137)云计算&大数据(85)综合其他(79)数据库(74)C++(74)机器学习(45)PostgreSQL(40)Conan(36)区块链(28)Weblate(28)

语言

全部英语(308)中文(简体)(70)中文(繁体)(5)英语(4)中文(简体)(3)日语(2)韩语(1)ro(1)zh(1)

格式

全部PDF文档 PDF(334)其他文档 其他(55)PPT文档 PPT(4)DOC文档 DOC(3)
 
本次搜索耗时 0.039 秒,为您找到相关结果约 396 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • 综合其他
  • 数据库
  • C++
  • 机器学习
  • PostgreSQL
  • Conan
  • 区块链
  • Weblate
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 中文(简体)
  • 日语
  • 韩语
  • ro
  • zh
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Ubuntu Desktop Training 2009

    Ubuntu Desktop Training Ubuntu Desktop Course Copyright © 2009 Canonical Limited Ubuntu Desktop Training Written by and attributed to Canonical Ltd. and the Ubuntu Training community 2008-2009. This ......................... x 4. Instructor Responsibilities ..................... xiii 4.1. Pre-Training Preparation/Checks ........................................................ xiii 4.2. Instructional ................ 149 4.7. Additional Applications ..................... 155 iv Ubuntu Desktop Training Ubuntu Desktop Course Copyright © 2009 Canonical Limited 4.7.1. GnuCash Accounting ..........
    0 码力 | 428 页 | 57.45 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    It includes support for 8-bit floating point (FP8) precision on Hopper GPUs which provides better training and inference performance with lower memory utilization. Transformer Engine also includes a collection available in this container through the native implementation. AMP enables users to try mixed precision training by adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal be found here. ‣ APEX AMP examples can be found here. For more information about AMP, see the Training With Mixed Precision Guide. Tensor Core Examples The tensor core examples provided in GitHub and
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    3’s ‘Learning Techniques and Efficiency’ section, labeling of training data is an expensive undertaking. Factoring in the costs of training human labelers on a given task, and then making sure that the significantly improve the quality you can achieve while retaining the same labeling costs i.e., training data-efficient (specifically, label efficient) models. We will describe the general principles of The vanilla supervised learning paradigm that we are familiar has two limitations when it comes to training a model for a new task: 1. Data Efficiency: It relies heavily on labeled data, and hence achieving
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Secondly, data augmentation and distillation can bring significant efficiency gains during the training phase, which is the focus of this chapter. We start this chapter with an introduction to sample benchmark the model in the training phase namely sample efficiency and label efficiency. Sample Efficiency Sample Efficiency is concerned with the total number of training samples including repeats seen (in terms of accuracy, precision, recall or other performance metrics). We designate a new model training setup to be more sample efficient, if it achieves similar or better performance with fewer data
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Solving Nim by the Use of Machine Learning

    Program . . . . . . 18 5.2.3 How the Graph Is Made Smaller . . . . . . . . . . . . . . 18 5.2.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2.5 Terminating the Program . . . . . . . . . 21 5.3.1 Acquiring Data . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6 Describing the Code 23 6.1 The Deterministic . . . . . . 24 6.2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 6.2.4 Making Moves . . . . . . .
    0 码力 | 109 页 | 6.58 MB | 1 年前
    3
  • pdf文档 Apache OFBiz User Manual Release 18.12

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.11. Training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . processes. • Job Planning and Definition • Recruitment • Candidate Selection and Hiring • Employee Training and Development • Employee Evaluation and Performance Management • Employee Salary and Benefits for job positions • Review Resumes / CVs • Arrange and Grade Interviews Employee Training and Development Training and professional development is important for an organisation because it ensures that
    0 码力 | 27 页 | 334.94 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    artificial intelligence. Deep learning with neural networks has been the dominant methodology of training new machine learning models for the past decade (Refer to Figure 1-1 for the connection between learning. AlexNet1 was one of the earliest models to rely on Graphics Processing Units (GPUs) for training, which could 1 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification operations such as multiplying two matrices together much faster than traditional CPUs. Advances in the training algorithms There has been substantial progress in machine learning algorithms over the past two
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    might be equally important, thus selecting the most informative features is crucial for making the training step efficient. In the case of visual, textual, and other multimodal data, we often construct the the embeddings and we have visualized them too. Let’s start using them! Consider the scenario of training a model to predict whether kids can safely enjoy interacting with an animal in a petting zoo. This can train a deep learning model using the animals’ embedding as the input. From the perspective of training the model, it is agnostic to what the embedding is for (a piece of text, audio, image, video, or
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    continue to wow us and break records, their talent is increasingly enhanced by better data / inputs / training. The same is true for businesses, where computers are ingesting massive datasets to get smarter relevant, with significant use). Source: Epoch AI (5/25) Training Dataset Size (Number of Words) for Key AI Models – 1950-2025, per Epoch AI Training Dataset Size – Number of Words +260% / Year AI Technology involving decimal numbers. In AI, total FLOPs are often used to estimate the computational cost of training or running a model. Note: Only language models shown (per Epoch AI, includes state of the art improvement
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
共 396 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 40
前往
页
相关搜索词
UbuntuDesktopTrainingPyTorchReleaseNotesEfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewDeepSeekV2StrongEconomicalandMixtureofExpertsLanguageModelSolvingNimbytheUseMachineApacheOFBizUserManual18.12IntroductionArchitecturesTrendsArtificialIntelligence
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩