积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(579)综合其他(266)Weblate(213)Java(192)Python(165)云计算&大数据(152)Spring(144)数据库(130)VirtualBox(85)Julia(81)

语言

全部英语(1070)中文(简体)(93)中文(繁体)(20)德语(5)英语(5)日语(3)西班牙语(1)法语(1)意大利语(1)韩语(1)

格式

全部PDF文档 PDF(922)其他文档 其他(276)PPT文档 PPT(2)DOC文档 DOC(1)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 综合其他
  • Weblate
  • Java
  • Python
  • 云计算&大数据
  • Spring
  • 数据库
  • VirtualBox
  • Julia
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 德语
  • 英语
  • 日语
  • 西班牙语
  • 法语
  • 意大利语
  • 韩语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Optimal Canary Deployments using Istio and how it scores over Spring Cloud and Kubernetes

    Optimal Canary Deployments using Istio and how it scores over Spring Cloud and Kubernetes Presented by Archna Gupta What is a Canary Release or Deployment? • A canary deployment, or canary release
    0 码力 | 9 页 | 1011.00 KB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    · , k hj(ω) = 0, j = 1, · · · , l with variable ω ∈ Rn, domain D = �k i=1 domgi ∩�l j=1 domhj, optimal value p∗ Objective function f (ω) k inequality constraints gi(ω) ≤ 0, i = 1, · · · , k l equality December 28, 2021 19 / 82 The Lower Bounds Property If α ⪰ 0, then G(α, β ) ≤ p∗, where p∗ is the optimal value of the primal problem Proof: If ˜ω is feasible and α ⪰ 0, then f (˜ω) ≥ L(˜ω, α, β ) ≥ inf Find the best low bound on p∗, obtained from Lagrange dual function A convex optimization problem (optimal value denoted by d∗) α, β are dual feasible if α ⪰ 0, (α, β ) ∈ dom G and G > −∞ Often simplified
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    for some α and β Theorem 1. Lower Bounds Property: If α ⪰ 0, then G(α, β ) ≤ p∗ where p∗ is the optimal value of the (original) primal problem defined by (9)∼(11). Proof. If �ω is feasible, then we have (9)∼(11) as follows maxα,β G(α, β ) (14) s.t. α ⪰ 0, ∀i = 1, · · · , k (15) We denote by d∗ the optimal value of the above Lagrange dual problem. The weak duality d∗ ≤ p∗ always holds for all optimization optimizing its dual problem. 2.2.2 Complementary Slackness Let ω∗ be a primal optimal point and (α∗, β ∗) be a dual optimal point. Theorem 2. Complementary Slackness: If strong duality holds, then α∗
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    training by adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting training by adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting training by adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    elements and a fixed memory budget, how many hash functions do we need in order to minimize Pfp? Optimal number of hash functions 1 0 1 1 1 0 0 1 1 1 1 0 1 1 n bits h1 h2 hk … k hash functions 1 0 elements and a fixed memory budget, how many hash functions do we need in order to minimize Pfp? Optimal number of hash functions After m elements have been inserted to the filter, what is the probability elements and a fixed memory budget, how many hash functions do we need in order to minimize Pfp? Optimal number of hash functions After m elements have been inserted to the filter, what is the probability
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    that the algorithm needs to process. Unlike traditional algorithm problems where we expect exact optimal answers, machine learning applications can often tolerate approximate responses, since often there higher quality models are deeper, hence will have a higher inference latency. Figure 1-4: Pareto Optimal Models & Pareto Frontier. The green dots are models that have the best tradeoffs for the given objectives which gets a better accuracy while keeping the latency the same (and vice versa). They are pareto-optimal models and together make the pareto-frontier. However, certain models might offer better trade-offs
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 Best Practices for MySQL with SSDs

    SSD pct diff Config #1 – MySQL baseline 7,366.55 24,440.57 232% Config #2 – sub‐optimal config 4,478.28 37,802.13 744% pct diff ‐39% 55% 1,000‐wh; 250‐connections SATA NVMe pct diff Config #1 – MySQL baseline 6,668.33 23,175.19 248% Config #2‐ sub‐optimal config 4,457.47 33,857.05 660% pct diff ‐33% 46% Configuration #2 (sub‐optimal, see appendix A) has 3GB of buffer pool, and therefore very little buffer space to be spared as disk cache. In Configuration #3 (MySQL Optimal, see appendix A) we increased
    0 码力 | 14 页 | 416.88 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    Don’t fret! Let’s start with how to compute the saliency scores. Saliency Scores In the paper Optimal Brain Damage1, LeCun et al. suggested that as much as 50% of the connections (weights) from a large we have a project that relies on it for sparsifying a deep learning model. The authors of the Optimal Brain Damage (OBD) paper approximate the saliency score using a second-derivative of the weights performance." arXiv preprint arXiv:1907.04840 (2019). 1 LeCun, Yann, John Denker, and Sara Solla. "Optimal brain damage." Advances in neural information processing systems 2 (1989). As you can deduce, the
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    Hyperparameter Optimization (HPO) is the process of choosing values for hyperparameters that lead to an optimal model. HPO performs trials with different sets of hyperparameters using the model as a blackbox. larger number of subspaces or subranges than unimportant parameters that need to be searched for an optimal value. For example, in the US presidential elections, the swing states are the important parameters resources become available or reduced in resource constrained situations. The likelihood of finding the optimal increases with the number of trials. In contrast, the Grid Search has a fixed number of maximum
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    19 ??? Vasiliki Kalavri | Boston University 2020 20 Optimal parallelism per operator ??? Vasiliki Kalavri | Boston University 2020 20 Optimal parallelism per operator captures upstream operators 2020 20 Optimal parallelism per operator captures upstream operators Aggregated true output rate of operator oj , when oj itself and all upstream ops are deployed with optimal parallelism 2020 20 Optimal parallelism per operator captures upstream operators Aggregated true output rate of operator oj , when oj itself and all upstream ops are deployed with optimal parallelism
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
OptimalCanaryDeploymentsusingIstioandhowitscoresoverSpringCloudKubernetesLectureSupportVectorMachineNotesonPyTorchReleaseFilteringsamplingstreamsCS591K1DataStreamProcessingAnalytics2020EfficientDeepLearningBookEDLChapterIntroductionBestPracticesforMySQLwithSSDsAdvancedCompressionTechniquesAutomationElasticitystatemigrationPart
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩