积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(26)机器学习(26)综合其他(7)KiCad(5)后端开发(4)Python(1)人工智能(1)GIMP(1)ffmpeg(1)

语言

全部中文(简体)(19)英语(17)

格式

全部PDF文档 PDF(36)其他文档 其他(1)
 
本次搜索耗时 0.078 秒,为您找到相关结果约 37 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 综合其他
  • KiCad
  • 后端开发
  • Python
  • 人工智能
  • GIMP
  • ffmpeg
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Early-stopping-Dropout

    Early Stop,Dropout 主讲人:龙良曲 Tricks ▪ Early Stopping ▪ Dropout ▪ Stochastic Gradient Descent Early Stopping ▪ Regularization How-To ▪ Validation set to select parameters ▪ Monitor validation performance highest val perf. Dropout ▪ Learning less to learn better ▪ Each connection has ? = 0, 1 to lose https://github.com/MorvanZhou/PyTorch-Tutorial Clarification ▪ torch.nn.Dropout(p=dropout_prob) ▪ tf.nn nn.dropout(keep_prob) Behavior between train and test Batch- Norm Stochastic Gradient Descent ▪ Stochastic ▪ not random! ▪ Deterministic Gradient Descent https://towardsdatascience.com/differen
    0 码力 | 16 页 | 1.15 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    footprints. In the first chapter, we briefly introduced learning techniques such as regularization, dropout, data augmentation, and distillation to improve quality. These techniques can boost metrics like augmentation and distillation, to discuss in this chapter. This is because, firstly, regularization and dropout are fairly straight-forward to enable in any modern deep learning framework. Secondly, data augmentation tensorflow.keras import applications as apps from tensorflow.keras import layers, optimizers, metrics DROPOUT_RATE = 0.2 LEARNING_RATE = 0.0002 NUM_CLASSES = 102 def create_model(): # Initialize the core
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 keras tutorial

    .......................................................................................... 38 Dropout Layers ......................................................................................... Activation, Dropout model = Sequential() model.add(Dense(512, activation='relu', input_shape=(784,))) model.add(Dropout(0.2)) model.add(Dense(512, activation='relu')) model.add(Dropout(0.2)) model 19  Line 1 imports Sequential model from Keras models  Line 2 imports Dense layer, Dropout layer and Activation module  Line 4 create a new sequential model using Sequential API  Line
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    oxford_flowers102 flowers dataset. We used two hyperparameters: LEARNING_RATE and DROPOUT_RATE. The learning rate was set to 0.0002 and the dropout rate was 0.2. The model reached the top accuracy of 70% after training create_model() function here has two additional parameters: learning_rate and dropout_rate which replace the global LEARNING_RATE and DROPOUT_RATE parameters from chapter 3. We have an additional function build_hp_model() .01] and dropout_rate in range [.1, .8]. The build_hp_model() is called by the tuner to create a model for each trial with the chosen values for the learning_rate and dropout_rate. DROPOUT_RATE = 0.2
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    2 Activation [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.3 Dropout [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.4 Flatten [source] softmax 多分类: import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.optimizers import SGD # 生成虚拟数据 import numpy as np x_train = np.random model.add(Dense(64, activation='relu', input_dim=20)) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) sgd = SGD(lr=0
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    简洁实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4.6 暂退法(Dropout) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.6.1 重新审视过拟合 飞速进化的时期。事实上, 最先进的技术不仅仅是将可用资源应用于几十年前的算法的结果。下面列举了帮助研究人员在过去十年中取 得巨大进步的想法(虽然只触及了皮毛)。 • 新的容量控制方法,如dropout (Srivastava et al., 2014),有助于减轻过拟合的危险。这是通过在整个神 经网络中应用噪声注入 (Bishop, 1995) 来实现的,出于训练目的,用随机变量来代替权重。 05347819 0.17096086 0.1863975 -0.09107699 -0.02123026]] 在接下来的章节中,我们将继续讨论过拟合问题和处理这些问题的方法,例如权重衰减和dropout。 148 4. 多层感知机 小结 • 欠拟合是指模型无法继续减少训练误差。过拟合是指训练误差远小于验证误差。 • 由于不能基于训练误差来估计泛化误差,因此简单地最小化训练误差并不一定意味着泛化误差的减小。
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    7 可视化 8.8 参考文献 第 9 章 过拟合 9.1 模型的容量 9.2 过拟合与欠拟合 9.3 数据集划分 9.4 模型设计 9.5 正则化 9.6 Dropout 9.7 数据增强 9.8 过拟合问题实战 9.9 参考文献 第 10 章 卷积神经网络 10.1 全连接网络的问题 10.2 卷积神经网络 10.3 卷积层实现 Unit,简称 ReLU)激活函数,这是现在使用最为广泛的激活函数之一。2012 年, Alex Krizhevsky 提出了 8 层的深层神经网络 AlexNet,它采用了 ReLU 激活函数,并使用 Dropout 技术来防止过拟合,同时抛弃了逐层预训练的方式,直接在两块 NVIDIA GTX580 GPU 上训练网络。AlexNet 在 ILSVRC-2012 图片识别比赛中获得了第一名的成绩,比第二 1104 0.0785 0 预览版202112 9.6 Dropout 13 图 9.20 正则化系数:0.00001 图 9.21 正则化系数:0.001 图 9.22 正则化系数:0.1 图 9.23 正则化系数:0.13 9.6 Dropout 2012 年,Hinton 等人在其论文《Improving neural
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    convolutional network we used in chapter 3. width_multiplier = 1.0 params = { 'learning_rate': 1e-3, 'dropout_rate': 0.5, } model_wm_10, _ = train_model( width_multiplier, params, epochs=5) Model: "model_2" 128 chNormalization) max_pooling1d_6 (MaxPooling (None, 31, 32) 0 1D) dropout_10 (Dropout) (None, 31, 32) 0 conv1d_14 (Conv1D) (None, 31, 64) 256 chNormalization) max_pooling1d_7 (MaxPooling (None, 7, 64) 0 1D) dropout_11 (Dropout) (None, 7, 64) 0 conv1d_16 (Conv1D) (None, 7, 128)
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    second convolution block is flattened to a rank-2 tensor (rank-1 excluding the batch dimension). A dropout layer follows right after. The final layer is a dense (fully-connected) layer of size 10 because sizes, etc. However, be careful to adhere to certain constraints. For example, adding a dropout layer with dropout rate = 0.99 will drop most of the output and removing the non-linearity will make your tf import tensorflow.keras as keras import tensorflow.keras.layers as layers def create_model(dropout_rate=0.0): """Create a simple convolutional network.""" inputs = keras.Input(shape=(28, 28, 1))
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-05深度学习-深度学习实践

    x[2] x[3] x[1] a[L] DropOut Dropout的功能类似于?2正则化,与?2正则化不同的是,被应用的方 式不同,dropout也会有所不同,甚至更适用于不同的输入范围 keep-prob=1(没有dropout) keep-prob=0.5(常用取值,保留一半神经元) 在训练阶段使用,在测试阶段不使用! Dropout正则化 13 正则化 Early stopping代表提早停止训练神经网络
    0 码力 | 19 页 | 1.09 MB | 1 年前
    3
共 37 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
深度学习PyTorch入门实战35EarlystoppingDropoutEfficientDeepLearningBookEDLChapterTechniqueskerastutorialAutomationKeras基于Python动手v2深度学习AdvancedCompression机器课程温州大学05实践
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩