积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(240)云计算&大数据(88)Julia(80)Python(71)Jupyter(62)数据库(59)Apache Kyuubi(44)PostgreSQL(40)综合其他(37)Pandas(32)

语言

全部英语(384)中文(繁体)(20)中文(简体)(16)日语(1)韩语(1)kor(1)英语(1)

格式

全部PDF文档 PDF(341)其他文档 其他(84)
 
本次搜索耗时 0.052 秒,为您找到相关结果约 425 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • Julia
  • Python
  • Jupyter
  • 数据库
  • Apache Kyuubi
  • PostgreSQL
  • 综合其他
  • Pandas
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 日语
  • 韩语
  • kor
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Application of C++ in Computational Cancer Modeling

    predict the window of opportunity for screening) National Cancer Institute – What is Cancer 3A computational model for cancer initiation 4 A single cell • Consider a bunch of ‘pseudo’ cells. • Cells have a stochastic process (Markov process). Birth event Mutation event Random Time 𝑢12 𝜆1A computational model for cancer initiation 4 A single cell • Consider a bunch of ‘pseudo’ cells. • Cells have rnd_generator; std::exponential_distribution<> exp{rate}; double time = exp(rnd_generator); 𝑢12 𝜆1A computational model for cancer initiation 5 Healthy cell Cell that harbors a neutral mutation Cancerous
    0 码力 | 47 页 | 1.14 MB | 5 月前
    0.03
  • pdf文档 PyTorch Release Notes

    accelerates widely-used deep learning frameworks such as PyTorch. PyTorch is a GPU-accelerated tensor computational framework with a Python front end. Functionality can be easily extended with common Python libraries GEMMs and convolutions with FP16 inputs can run on Tensor Cores, which provide an 8X increase in computational throughput over FP32 arithmetic. APEX AMP is included to support models that currently rely on GEMMs and convolutions with FP16 inputs can run on Tensor Cores, which provide an 8X increase in computational throughput over FP32 arithmetic. APEX AMP is included to support models that currently rely on
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Theorem Proving in Lean Release 3.23.0

    INTRODUCTION 1.1 Computers and Theorem Proving Formal verification involves the use of logical and computational methods to establish claims that are expressed in precise mathematical terms. These can include reasoning about complex systems, and to verify claims in both domains. Lean’s underlying logic has a computational interpretation, and Lean can be viewed equally well as a programming lan- guage. More to the point aspects of Lean are explored in a companion tutorial to this one, Programming in Lean, though computational aspects of the system will make an appearance here. 1.2 About Lean The Lean project was launched
    0 码力 | 173 页 | 777.93 KB | 1 年前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    device-level token-dropping strategy during training. This approach first computes the average computational budget for each device, which means that the capacity factor for each device is equivalent to al. (2021), we drop tokens with the lowest affinity scores on each device until reaching the computational budget. In addition, we ensure that the tokens belonging to approximately 10% of the training for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 2368– 2378. Association for Computational Linguistics
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Programming in Lean Release 3.4.2

    which one can define mathematical objects and reason about them. But expressions in Lean have a computational interpretation, which is to say, they can be evaluated. Any closed term of type nat – that is of type nat without free variables – evaluates to a numeral, as long as it is defined in the computational fragment of Lean’s foundational framework. Similarly, any closed term of type list nat evaluates on Lean: instead of thinking of it as a theorem prover whose language just happens to have a computational interpretation, think of it as a programming language that just happens to come equipped with
    0 码力 | 51 页 | 220.07 KB | 1 年前
    3
  • pdf文档 An Introduction to Lean

    The evaluator is not very efficient, however, and is not intended to be used for substantial computational tasks. For that purpose, Lean also generates bytecode for every definition of a computable object expression. • #eval can be used to run the bytecode evaluator on any closed term that has a computational interpretation. Lean’s standard library defines a number of data types, such as nat, int, list type. They are used in the standard library to define, for example, the rational numbers, and a computational representation of finite sets (as lists, without duplicates, up to permutation). Inductive types
    0 码力 | 48 页 | 191.92 KB | 1 年前
    3
  • pdf文档 Algorithmic Complexity

    Complexity @ CppCon 2021 Computational Complexity Computational Complexity or simply Complexity of an algorithm is the amount of resources required to run it. - from Computational complexity in wikipedia The amount of time, storage, or any other resource. 15 Algorithmic Complexity @ CppCon 2021 Computational Complexity n → f(n) n - is size of input f(n) - is the amount of resources required to run Amount of memory required Often denoted by S(n) or s(n) 16Algorithmic Complexity @ CppCon 2021 Computational Complexity Worst-Case Complexity Maximum amount of resources needed over all inputs of size
    0 码力 | 52 页 | 1.01 MB | 5 月前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.3

    details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8 Computational tools 101 8.1 Statistical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . analysis toolkit, Release 0.7.3 100 Chapter 7. Indexing and selecting data CHAPTER EIGHT COMPUTATIONAL TOOLS 8.1 Statistical functions 8.1.1 Covariance The Series object has a method cov to compute s[’d’] = s[’b’] # so there’s a tie In [175]: s.rank() Out[175]: a 2.0 b 3.5 102 Chapter 8. Computational tools pandas: powerful Python data analysis toolkit, Release 0.7.3 c 1.0 d 3.5 e 5.0 rank
    0 码力 | 297 页 | 1.92 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    arithmetic calculation involving decimal numbers. In AI, total FLOPs are often used to estimate the computational cost of training or running a model. Note: Only language models shown (per Epoch AI, includes development – one that builds on recent exponential gains in model scale, training data, and computational efficiency. Timelines for AGI remain uncertain, but expert expectations have shifted forward scale and sophistication of artificial intelligence is demanding an extraordinary amount of computational horsepower, primarily from AI-focused data centers. These facilities – purpose-built to train
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.1

    details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 8 Computational tools 95 8.1 Statistical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . data analysis toolkit, Release 0.7.1 94 Chapter 7. Indexing and selecting data CHAPTER EIGHT COMPUTATIONAL TOOLS 8.1 Statistical functions 8.1.1 Covariance The Series object has a method cov to compute s[’d’] = s[’b’] # so there’s a tie In [175]: s.rank() Out[175]: a 2.0 b 3.5 96 Chapter 8. Computational tools pandas: powerful Python data analysis toolkit, Release 0.7.1 c 1.0 d 3.5 e 5.0 rank
    0 码力 | 281 页 | 1.45 MB | 1 年前
    3
共 425 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 43
前往
页
相关搜索词
ApplicationofComputationalCancerModelingPyTorchReleaseNotesTheoremProvinginLean3.23DeepSeekV2StrongEconomicalandEfficientMixtureExpertsLanguageModelProgramming3.4AnIntroductiontoAlgorithmicComplexitypandaspowerfulPythondataanalysistoolkit0.7TrendsArtificialIntelligence
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩