积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(41)其它语言(31)综合其他(22)Blender(21)Lean(5)云计算&大数据(4)机器学习(4)C++(3)人工智能(1)Pascal(1)

语言

全部英语(52)中文(繁体)(10)中文(简体)(5)

格式

全部PDF文档 PDF(54)其他文档 其他(13)
 
本次搜索耗时 0.049 秒,为您找到相关结果约 67 个.
  • 全部
  • 后端开发
  • 其它语言
  • 综合其他
  • Blender
  • Lean
  • 云计算&大数据
  • 机器学习
  • C++
  • 人工智能
  • Pascal
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Symbolic Calculus for High-Performance Computing: From Scratch Using C++23

    trick Comparison Binding Constraints Architecture Substitution Construction Conclusion Symbolic Calculus for High-Performance Computing from Scratch using C++23 Vincent Reverdy Laboratoire d’Annecy de people, you can do it yourself) What this talk is A tutorial so you can build your own symbolic calculus tools from scratch in modern C++ CppCon - Vincent Reverdy - October 4th, 2023 - Aurora, Colorado = y / z) should generate a new formula Simplification based on mathematical concepts Symbolic calculus (derivatives, integrals) Full blown custom rule-based rewriting High-performance Since formulas
    0 码力 | 70 页 | 1.80 MB | 5 月前
    3
  • pdf文档 Programming in Lean Release 3.4.2

    enough, in fact, to include all conventional mathematics. Lean’s underlying logical framework, the Calculus of Inductive Constructions, constitutes a surprisingly good programming language. It is expressive efficient compilation in a future version of Lean. Viewed from a computational perspective, the Calculus of Inductive Constructions is an instance of a purely functional programming language. This means TWO TYPES AND TERMS Lean’s foundational framework is a version of a logical system known as the Calculus of Inductive Con- structions, or CIC. Programming in Lean amounts to writing down expressions in
    0 码力 | 51 页 | 220.07 KB | 1 年前
    3
  • pdf文档 An Introduction to Lean

    dependent type theory. Specifi- cally, it implements a version of dependent type theory known as the Calculus of Inductive Constructions. The CIC is a formal language with a small and precise set of rules that programming and metaprogramming. 2 Defining Objects in Lean As a foundational framework, the Calculus of Inductive Constructions, or CIC, is flexi- ble enough to define all kinds of mathematical objects chapter. CHAPTER 2. DEFINING OBJECTS IN LEAN 20 2.3 Defining New Types In the version of the Calculus of Inductive Constructions implemented by Lean, we start with a sequence of type universes, Sort
    0 码力 | 48 页 | 191.92 KB | 1 年前
    3
  • pdf文档 Theorem Proving in Lean Release 3.23.0

    to do it in a natural way. More specifically, Lean is based on a version of a system known as the Calculus of Constructions [CoHu88] with inductive types [Dybj94]. We will explain not only how to define these in a natural and uniform way. Lean is based on a version of dependent type theory known as the Calculus of Constructions, with a countable hierarchy of non-cumulative universes and inductive types. By q from dependent type theory as our notion of implication. This is the approach followed in the Calculus of Constructions, and hence in Lean as well. The fact that the rules for implication in a proof
    0 码力 | 173 页 | 777.93 KB | 1 年前
    3
  • pdf文档 Back to Basics: Lambda Expressions

    library for managing access to data shared between threadsLambda Expressions ● History ○ lambda calculus is a branch of mathematics ■ introduced in the 1930’s to prove if “something” can be solved ■ ■ used to construct a model where all functions are anonymous ■ some of the first items lambda calculus was used to address ● if a sequence of steps can be defined which solves a problem, then can a program other computer ○ yes, given sufficient time and memory ■ languages which were influenced by lambda calculus ● Haskell, LISP, and ML 5Lambda Expressions ● History ○ why do we use the terminology lambda
    0 码力 | 48 页 | 175.89 KB | 5 月前
    3
  • pdf文档 The Hitchhiker’s Guide to Logical Verification

    assistants are software tools designed to help their users carry out computer-checked proofs in a logical calculus. We usually call them proof assis- tants, or interactive theorem provers, but a mischievous student interactive theorem proving: It has a highly expressive, and highly interesting, logic based on the calculus of inductive constructions, a dependent type theory. It is extended with classical axioms and quotient state their expected properties as lemmas. Lean’s logical foundation is a rich formalism called the calculus of inductive constructions, which supports dependent types. In this chapter, we restrict our attention
    0 码力 | 215 页 | 1.95 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 16. 什么是梯度

    https://github.com/tomgoldstein/loss-landscape Saddle point https://www.khanacademy.org/math/multivariable-calculus/applications-of- multivariable-derivatives/optimizing-multivariable-functions-videos/v/saddle-points
    0 码力 | 17 页 | 1.49 MB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2

    to define things in mutual recursion. Grammar At its core, Agda is a dependently typed lambda calculus. The grammar of terms where a represents a generic term is: a ::= x -- variable t/Succeed/LaterPrims.agda]. References [1] Niccolò Veltri and Andrea Vezzosi. “Formalizing pi-calculus in guarded cubical Agda.” [https://doi.org/10.1145/3372885.3373814] In CPP’20. ACM, New York, NY indexed data. As an example, let us write a correct-by-construction type checker for simply typed λ-calculus. First we define the raw terms, using de Bruijn indices for variables and explicit type annotations
    0 码力 | 348 页 | 414.11 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2.2

    to define things in mutual recursion. Grammar At its core, Agda is a dependently typed lambda calculus. The grammar of terms where a represents a generic term is: a ::= x -- variable interval I, or IsOne _ type. References [1] Niccolò Veltri and Andrea Vezzosi. “Formalizing pi-calculus in guarded cubical Agda.” [https://doi.org/10.1145/3372885.3373814] In CPP’20. ACM, New York, NY indexed data. As an example, let us write a correct-by-construction type checker for simply typed λ-calculus. First we define the raw terms, using de Bruijn indices for variables and explicit type annotations
    0 码力 | 354 页 | 433.60 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.2.1

    to define things in mutual recursion. Grammar At its core, Agda is a dependently typed lambda calculus. The grammar of terms where a represents a generic term is: a ::= x -- variable interval I, or IsOne _ type. References [1] Niccolò Veltri and Andrea Vezzosi. “Formalizing pi-calculus in guarded cubical Agda.” [https://doi.org/10.1145/3372885.3373814] In CPP’20. ACM, New York, NY indexed data. As an example, let us write a correct-by-construction type checker for simply typed λ-calculus. First we define the raw terms, using de Bruijn indices for variables and explicit type annotations
    0 码力 | 350 页 | 416.80 KB | 1 年前
    3
共 67 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
前往
页
相关搜索词
SymbolicCalculusforHighPerformanceComputingFromScratchUsingC++23ProgramminginLeanRelease3.4AnIntroductiontoTheoremProving3.23BackBasicsLambdaExpressionsTheHitchhikerGuideLogicalVerification深度学习PyTorch入门实战16什么梯度AgdaUserManualv26.2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩