积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)机器学习(8)数据库(7)Greenplum(6)后端开发(2)系统运维(1)综合其他(1)C++(1)Go(1)Linux(1)

语言

全部英语(17)中文(简体)(3)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 20 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 数据库
  • Greenplum
  • 后端开发
  • 系统运维
  • 综合其他
  • C++
  • Go
  • Linux
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 4: Regularization and Bayesian Statistics

    Lecture 4: Regularization and Bayesian Statistics Feng Li Shandong University fli@sdu.edu.cn September 20, 2023 Feng Li (SDU) Regularization and Bayesian Statistics September 20, 2023 1 / 25 Lecture Regularization and Bayesian Statistics 1 Overfitting Problem 2 Regularized Linear Regression 3 Regularized Logistic Regression 4 MLE and MAP Feng Li (SDU) Regularization and Bayesian Statistics September y = θ0 + θ1x y = θ0 + θ1x + θ2x2 y = θ0 + θ1x + · · · + θ5x5 Feng Li (SDU) Regularization and Bayesian Statistics September 20, 2023 3 / 25 Overfitting Problem (Contd.) Underfitting, or high bias,
    0 码力 | 25 页 | 185.30 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    smartly allocate resources to promising ranges of hyper-parameters like Bayesian Optimization (Figure 1-12 illustrates Bayesian Optimization). These algorithms construct ‘trials’ of hyper-parameters, where What varies across them is how future trials are constructed based on past results. Figure 1-12: Bayesian Optimization over two dimensions x1 and x2. Red contour lines denote a high loss value, and blue to the algorithm. Each cross is a trial (pair of x1 and x2 values) that the algorithm evaluated. Bayesian Optimization picks future trials in regions that were more favorable. Source. As an extension to
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    could sample more in the favorable regions? The next search strategy does exactly that! Bayesian Optimization Bayesian Optimization Search (BOS) is a sequential model based search technique where the search called Configuration Evaluation. Let's discuss it in detail in the next section. Figure 7-3: (a) Bayesian Optimization Search on a two dimensional search space. The red areas correspond to lower validation
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    how to reduce the large number of variables to a small number. Averaging over complexity is the Bayesian approach. Use as complex a model might be needed, but don’t choose a single parameter values. Instead with terms of arbitrarily high order. How can it be good to use a model that we know is false? The Bayesian answer: It is not good. We should abandon the idea of using the best parameters and instead average
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    is true, and P(A) and P(B) are probability of observing A and B, respectively. We now introduce Bayesian inference by taking image recognition as an example. Our aim is to identify if there is a cat in calculate P(X = x), since both of 1 them share the same denominator P(X = x). Therefore, to perform Bayesian interference, the parameters we have to compute are only P(X = x | Y = y) and P(Y = y). Recalling
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 openEuler OS Technical Whitepaper Innovation Projects (June, 2023)

    capabilities for the upper layer, including classification and clustering for model identification and Bayesian optimization for parameter search. A-Tune software architecture A-Tune client (atune-adm) A-Tune 3) MPI/CPI Data sampling System parameter configuration Classification Al engine Clustering Bayesian optimization Server Efficient Concurrency and Ultimate Performance 040 openEuler OS Technical
    0 码力 | 116 页 | 3.16 MB | 1 年前
    3
  • pdf文档 SQLite as a Result File Format in OMNeT++

    scientific computing package -- notably smoothing, optimization and machine learning. ● PyMC is for your Bayesian/MCMC/hierarchical modeling needs. ● PyMix for mixture models ● If speed becomes a problem, consider
    0 码力 | 21 页 | 1.08 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别

    o��r���F �����T���������������I��� � +�Dong Chen, Xudong Cao, Liwei Wang, Fang Wen, Jian Sun. Bayesian face revisited: a joint formulation. 2012, european conference on computer vision. MSRA “Feature
    0 码力 | 81 页 | 12.64 MB | 1 年前
    3
  • pdf文档 02 Scientific Reading and Writing - Introduction to Scientific Writing WS2021/22

    nouns  Titles and Names  Titles: capitalize meaning-carrying words  Names: capitalize, e.g., Bayesian, Euclidean  References like Figure 1, Table 2, Section 3, Chapter 4, Equation 5 are names as well
    0 码力 | 26 页 | 613.57 KB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    WordCount – TeraSort – Enhanced DFSIO – Nutch Indexing – Page Rank Machine Learning – Bayesian Classification – K-Means Clustering Analytical Query HiBench 1.0 paper (“The HiBench Suite:
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
LectureRegularizationandBayesianStatisticsEfficientDeepLearningBookEDLChapterIntroductionAutomationOverviewNotesonGaussianDiscriminantAnalysisNaiveopenEulerOSTechnicalWhitepaperInnovationProjectsJune2023SQLSQLiteasResulFileFormatinOMNeT++TensorFlow快速入门实战人脸识别人脸识别02ScientificReadingWritingtoWS202122大数时代IntelHadoop
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩