积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(867)Java(336)综合其他(291)Spring(289)Python(243)Weblate(218)数据库(198)云计算&大数据(177)Julia(87)C++(79)

语言

全部英语(1334)中文(简体)(226)中文(繁体)(21)英语(4)德语(3)日语(3)法语(2)俄语(2)西班牙语(1)

格式

全部PDF文档 PDF(1160)其他文档 其他(395)TXT文档 TXT(42)DOC文档 DOC(4)PPT文档 PPT(3)
 
本次搜索耗时 0.066 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Java
  • 综合其他
  • Spring
  • Python
  • Weblate
  • 数据库
  • 云计算&大数据
  • Julia
  • C++
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 德语
  • 日语
  • 法语
  • 俄语
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Batch Norm

    Batch Norm 主讲人:龙良曲 Intuitive explanation Intuitive explanation Feature scaling ▪ Image Normalization ▪ Batch Normalization Batch Norm https://medium.com/syncedreview/facebook-ai-proposes-group-normalization- p-normalization- alternative-to-batch-normalization-fb0699bffae7 Pipeline nn.BatchNorm2d Class variables Test Visualization Advantages ▪ Converge faster ▪ Better performance ▪ Robust ▪ stable
    0 码力 | 16 页 | 1.29 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    3.3.4.2 设备并行 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.5 “sample”, “batch”, “epoch” 分别是什么? . . . . . . . . . . . . . . . . . . . 28 3.3.6 如何保存 Keras 模型? . . . . . . . . . 5 train_on_batch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.3.6 test_on_batch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.3.7 predict_on_batch . . . . . 5 train_on_batch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.3.6 test_on_batch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.3.7 predict_on_batch . . . . .
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    io 1 / 79 Where Are We? 2 / 79 Stream Processing Systems Design Issues ▶ Continuous vs. micro-batch processing ▶ Record-at-a-Time vs. declarative APIs 3 / 79 Outline ▶ Spark streaming ▶ Flink Continuous vs. micro-batch processing • Record-at-a-Time vs. declarative APIs 6 / 79 Spark Streaming ▶ Run a streaming computation as a series of very small, deterministic batch jobs. • Chops up the the live stream into batches of X seconds. • Treats each batch as RDDs and processes them using RDD operations. • Discretized Stream Processing (DStream) 7 / 79 Spark Streaming ▶ Run a streaming computation
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 keras tutorial

    dtype=float32) batch_dot It is used to perform the product of two data in batches. Input dimension must be 2 or higher. It is shown below: >>> a_batch = k.ones(shape=(2,3)) >>> b_batch = k.ones(shape=(3 ones(shape=(3,2)) >>> c_batch = k.batch_dot(a_batch,b_batch) >>> c_batch variable It is used to initializes a variable. Let us perform simple transpose layer will have batch size as the first dimension and so, input shape will be represented by (None, 8) and the output shape as (None, 16). Currently, batch size is None as it is not set. Batch size is usually
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    10) 公式 (3.1.10)中的w和x都是向量。在这里,更优雅的向量表示法比系数表示法(如w1, w2, . . . , wd)更具可读 性。|B|表示每个小批量中的样本数,这也称为批量大小(batch size)。η表示学习率(learning rate)。批量 大小和学习率的值通常是手动预先指定,而不是通过模型训练得到的。这些可以调整但不在训练过程中更新 的参数称为超参数(hyperpa 本并以小批量 方式获取数据。 在下面的代码中,我们定义一个data_iter函数,该函数接收批量大小、特征矩阵和标签向量作为输入,生成 大小为batch_size的小批量。每个小批量包含一组特征和标签。 def data_iter(batch_size, features, labels): num_examples = len(features) indices = list(range(num_examples)) for i in range(0, num_examples, batch_size): batch_indices = torch.tensor( indices[i: min(i + batch_size, num_examples)]) yield features[batch_indices], labels[batch_indices] 通常,我们利用GPU并行运算的优势,处理合
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    as parameters. It also has two hyperparameters: batch_size and epochs. We use a small batch size because our dataset has just 1020 samples. A large batch size, say 256, will result in a small number (5) train(model, tds, vds, batch_size=24, epochs=100): tds = tds.shuffle(1000, reshuffle_each_iteration=True) batch_tds = tds.batch(batch_size).prefetch(tf.data.AUTOTUNE) batch_vds = vds.batch(256).prefetch(tf ModelCheckpoint(tmpl, save_best_only=True, monitor="val_accuracy") history = model.fit( batch_tds, validation_data=batch_vds, epochs=epochs, callbacks=[checkpoints] ) return history Let’s run a baseline
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 firebird wire protocol

    8.3. Execute batch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 8.4. Release batch . . . . . . . 29 8.5. Cancel batch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 8.6. Sync batch . . . . . . . Int32 Minimum type (e.g. ptype_rpc = 2) Chapter 3. Databases 6 Int32 Maximum type (e.g. ptype_batch_send = 3) Int32 Preference weight (e.g. 2) Server Int32 Operation code If operation equals op_accept:
    0 码力 | 40 页 | 213.15 KB | 1 年前
    3
  • pdf文档 firebird gsec

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5. Batch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.2. Differences Between Batch And Interactive Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.3. Batch Mode Exit Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.4. Errors In Batch Mode Swap To Interactive Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 23 页 | 145.31 KB | 1 年前
    3
  • pdf文档 百度智能云 Apache Doris 文档

    max_batch_interval/max_batch_rows/max_batch_size max_batch_interval/max_batch_rows/max_batch_size "max_batch_interval" = "20", "max_batch_interval" = "20", "max_batch_rows" = "300000", "max_batch_rows" "max_batch_rows" = "300000", "max_batch_size" = "209715200" "max_batch_size" = "209715200" max_error_number max_error_number max_batch_rows * 10 max_batch_rows * 10 max_error_number max_error_number strict_mode "3",, "max_batch_interval" "max_batch_interval" == "20" "20",, "max_batch_rows" "max_batch_rows" == "300000" "300000",, "max_batch_size" "max_batch_size" == "209715200"
    0 码力 | 203 页 | 1.75 MB | 1 年前
    3
  • epub文档 Apache Kyuubi 1.6.1 Documentation

    server int 1.0.0 Batch Key Default Meaning Type Since kyuubi.batch.applic ation.check.interval PT5S The interval to check batch job application information. durat ion 1.6.0 kyuubi.batch.conf.i gnore.list comma separated list of ignored keys for batch conf. If the batch conf contains any of them, the key and the corresponding value will be removed silently during batch job submission. Note that this rule is You can also pre- define some config for batch job submission with prefix: kyuubi.batchConf.[batchType]. For example, you can pre-define spark.master for spark batch job with key kyuubi.batchConf.spark.spark
    0 码力 | 401 页 | 5.42 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
深度学习PyTorch入门实战40BatchNormKeras基于PythonScalableStreamProcessingSparkStreamingandFlinkkerastutorial动手v2EfficientDeepLearningBookEDLChapterTechniquesfirebirdwireprotocolgsec百度智能ApacheDoris文档Kyuubi1.6Documentation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩