深度学习与PyTorch入门实战 - 35. Early-stopping-Dropout
0 码力 | 16 页 | 1.15 MB | 1 年前32021 中国开源开发者报告
1/ 35 2/ 35 3/ 35 4/ 35 5/ 35 6/ 35 7/ 35 8/ 35 9/ 35 10/ 35 11/ 35 12/ 35 13/ 35 14/ 35 15/ 35 16/ 35 16/ 35 17/ 35 17/ 35 17/ 35 18/ 35 18/ 35 18/ 35 19/ 35 19/ 35 19/ 35 20/ 35 20/ 20/ 35 20/ 35 21/ 35 21/ 35 21/ 35 22/ 35 22/ 35 22/ 35 23/ 35 23/ 35 23/ 35 24/ 35 24/ 35 24/ 35 25/ 35 25/ 35 25/ 35 26/ 35 26/ 35 26/ 35 27/ 35 27/ 35 27/ 35 28/ 35 28/ 35 28/ 35 29/ 35 29/ 35 35 29/ 35 30/ 35 30/ 35 30/ 35 31/ 35 31/ 35 31/ 35 32/ 35 32/ 35 32/ 35 33/ 35 33/ 35 33/ 35 34/ 35 34/ 35 34/ 35 35/ 35 35/ 35 35/ 350 码力 | 35 页 | 36.74 MB | 1 年前3The fuzzy tale of an x/crypto vulnerability
cover: 0, uptime: 3s 2019/07/16 23:35:02 workers: 4, corpus: 6 (1s ago), crashers: 0, restarts: 1/6343, execs: 19031 (3171/sec), cover: 26, uptime: 6s 2019/07/16 23:35:05 workers: 4, corpus: 6 (4s ago) cover: 26, uptime: 9s 2019/07/16 23:35:08 workers: 4, corpus: 6 (7s ago), crashers: 0, restarts: 1/7269, execs: 145385 (12113/sec), cover: 26, uptime: 12s 2019/07/16 23:35:11 workers: 4, corpus: 7 (2s ago) cover: 26, uptime: 15s 2019/07/16 23:35:14 workers: 4, corpus: 7 (5s ago), crashers: 0, restarts: 1/6375, execs: 312406 (17354/sec), cover: 26, uptime: 18s 2019/07/16 23:35:17 workers: 4, corpus: 7 (8s ago)0 码力 | 74 页 | 2.99 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.19.1
Other API Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.2.3 Deprecations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090 xxi 35 API Reference 1091 35.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . df['col3'] Out[34]: 0 1 1 2 2 3 Name: col3, dtype: category Categories (3, object): [1, 2, 3] In [35]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories) In [36]: df['col3'] Out[36]:0 码力 | 1943 页 | 12.06 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.19.0
1.1.4 Removal of prior version deprecations/changes . . . . . . . . . . . . . . . . . . . . . . . . 35 1.1.5 Performance Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088 35 API Reference 1089 xxi 35.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 3] 10 Chapter 1. What’s New pandas: powerful Python data analysis toolkit, Release 0.19.0 In [35]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories) In [36]: df['col3'] Out[36]:0 码力 | 1937 页 | 12.03 MB | 1 年前3Game Development for Human Beings
Zenva for Schools – Coding courses for high schools ©2016 Zenva Pty Ltd all rights reserved Page 35 I find it easier to work with one layer for the background and one for the collision elements forEach(function(element){ 33 this.createFromTiledObject(element, this.items); 34 }, this); 35 }, 36 //find objects in a Tiled layer that containt a property called "type" equal to a certain Tiled map. In this tutorial we will use an orthogonal view map with 20×10 tiles. Each tile being 35×35 pixels. For those not familiar with it, an orthogonal view means that the player views the game by0 码力 | 472 页 | 8.46 MB | 10 月前3Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020
8Bd6i6upaTQK+/49GcE=">AB/ 3icbVBNS8NAEN34WetX1IMHL4tF8FQSEdRb0YvHCsYWmhA20m7dLMJuxuhFz8K148qHj1b3jz35ikOWjrg4G3782wMy9IOFPasr6NpeWV1bX1xkZ zc2t7Z9fc239QcSopODTmsewHRAFnAhzNId+IoFEAYdeMLkp/d4jSMVica+nC 8Bd6i6upaTQK+/49GcE=">AB/ 3icbVBNS8NAEN34WetX1IMHL4tF8FQSEdRb0YvHCsYWmhA20m7dLMJuxuhFz8K148qHj1b3jz35ikOWjrg4G3782wMy9IOFPasr6NpeWV1bX1xkZ zc2t7Z9fc239QcSopODTmsewHRAFnAhzNId+IoFEAYdeMLkp/d4jSMVica+nC 8Bd6i6upaTQK+/49GcE=">AB/ 3icbVBNS8NAEN34WetX1IMHL4tF8FQSEdRb0YvHCsYWmhA20m7dLMJuxuhFz8K148qHj1b3jz35ikOWjrg4G3782wMy9IOFPasr6NpeWV1bX1xkZ zc2t7Z9fc239QcSopODTmsewHRAFnAhzNId+IoFEAYdeMLkp/d4jSMVica+nC0 码力 | 81 页 | 13.18 MB | 1 年前3Golang Manual By AstaXie-20120522
AttrAddrClass Attr = 0x33 AttrArtificial Attr = 0x34 AttrBaseTypes Attr = 0x35 AttrCalling Attr = 0x36 AttrCount Attr = 0x37 AttrDataMemberLoc Attr = Tag = 0x33 TagVariable Tag = 0x34 TagVolatileType Tag = 0x35 TagDwarfProcedure Tag = 0x36 TagRestrictType Tag = 0x37 TagInterfaceType R_386_TLS_LE_32 R_386 = 34 /* 32 bit offset within static TLS block */ R_386_TLS_DTPMOD32 R_386 = 35 /* GOT entry containing TLS index */ R_386_TLS_DTPOFF32 R_386 = 36 /* GOT entry containing TLS0 码力 | 6205 页 | 12.83 MB | 1 年前3Solving Nim by the Use of Machine Learning
. . . . . . . . . . . . . 32 6.2.5 Run.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.2.6 Play.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.3 Programs for Supervised Bouton. “Nim, A Game with a Complete Mathematical Theory”. In: Annals of Mathematics 3.1/4 (1901), pp. 35–39. issn: 0003486X. url: http://www.jstor.org/ stable/1967631. 2Worst case time use does not make much objects for a pile of size n. 3Bouton, “Nim, A Game with a Complete Mathematical Theory”, op. cit., p. 35. 4 3.2 Nimrod During the “Festival of Britain” in 1951 in the UK, in the science exhibition, there0 码力 | 109 页 | 6.58 MB | 1 年前3【PyTorch深度学习-龙龙老师】-测试版202112
2312, 0.4867, 0.5699]]) 通过 torch.rand()函数可以创建采样自[0,1)区间的均匀分布的张量。例如: In [35]: torch.rand(2,3) # 创建采样自[0,1)均匀分布的矩阵 Out[35]: tensor([[0.3236, 0.4731, 0.4211], [0.9777, 0.2799, 0.1205]]) 运算实现如下: In [94]: x = torch.arange(5) x = torch.square(x) # 平方 Out[94]: 预览版202112 4.9 数学运算 35 tensor([ 0., 1., 4., 9., 16.]) 平方根运算实现如下: In [95]: torch.sqrt(x) # 平方根 Out[95]: 1~4 号班级的成绩册,每个班级 35 个学生,共 8 门科目成绩,则张 量?的 shape 应为:[4,35,8];同理,张量?保存了其它 6 个班级的成绩册,shape 为 [6,35,8]。通过合并这两份成绩册,便可得到该学校所有班级的成绩册数据,记为张量?, 它的 shape 应为[10,35,8],其中,数字 10 代表 10 个班级,35 代表 35 个学生,8 代表 8 门 科目。这就是张量合并操作的意义所在。0 码力 | 439 页 | 29.91 MB | 1 年前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100