积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(6)机器学习(6)

语言

全部英语(6)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.028 秒,为您找到相关结果约 6 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    understand its predecessor, Recurrent Neural Network or RNN which, unlike attention, doesn’t have the flexibility to look at the entire text sequence. A RNN contains a recurrent cell which operates on an input problem mentioned earlier, each news article can be represented as a sequence of words. Hence, an RNN with a softmax classifier stacked on top is a good choice to solve this problem. Figure 4-14: A pictorial sequences respectively. This problem requires two RNN networks namely: an encoder network and a decoder network as shown in figure 4-15. The encoder RNN transforms the english sequence to a latent representation
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    fed to a softmax layer to choose from a discrete set of choices. Figure 7-5: The architecture of an RNN controller for NAS. Each time step outputs a token . The output token is fed as input to the next expectation maximization problem. Given a set of actions which produce a child network with an accuracy , an RNN controller maximizes the expected reward (accuracy) represented as follows: They used a policy gradient which provide a good accuracy-latency tradeoff. Overall, it still followed the fundamental design of a RNN based controller similar to its predecessors. The idea to design block and cell structures by predicting
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    3.3.14 如何「冻结」网络层? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.15 如何使用有状态 RNN (stateful RNNs)? . . . . . . . . . . . . . . . . . . . . 33 3.3.16 如何从 Sequential 模型中移除一个层? . . . 循环层 Recurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.6.1 RNN [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.6.2 SimpleRNN 在验证集的误差不再下降时,如何中断训练? • 验证集划分是如何计算的? • 在训练过程中数据是否会混洗? • 如何在每个 epoch 后记录训练集和验证集的误差和准确率? • 如何「冻结」网络层? • 如何使用有状态 RNN (stateful RNNs)? • 如何从 Sequential 模型中移除一个层? • 如何在 Keras 中使用预训练的模型? • 如何在 Keras 中使用 HDF5 输入? • Keras
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 keras tutorial

    .................................................................. 13 Recurrent Neural Network (RNN) ................................................................................................. .............................................. 77 14. Keras ― Time Series Prediction using LSTM RNN .................................................................................... 83 15. Keras used to output the data (e.g. classification of image) Recurrent Neural Network (RNN) Recurrent Neural Networks (RNN) are useful to address the flaw in other ANN models. Well, Most of the ANN doesn’t
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    container. ‣ When possible PyTorch will now automatically use cuDNN persistent RNN’s providing improved speed for smaller RNN’s. ‣ Improved multi-GPU performance in both PyTorch c10d and Apex’s DDP. ‣ PyTorch Release 18.02 PyTorch RN-08516-001_v23.07 | 348 Known Issues cuBLAS 9.0.282 regresses RNN seq2seq FP16 performance for a small subset of input sizes. This issue should be fixed in the next version of NCCL ‣ Ubuntu 16.04 with December 2017 updates Known Issues cuBLAS 9.0.282 regresses RNN seq2seq FP16 performance for a small subset of input sizes. As a workaround, revert back to the 11
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Machine Learning

    are a specialized kind of feedforward network • It can be extended to recurrent neural networks (RNN) by involving feedback connections, which power many natural language applications 2 / 19 Neuron
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
共 6 条
  • 1
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesAutomationKeras基于Python深度学习kerastutorialPyTorchReleaseNotesMachine
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩