《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesunderstand its predecessor, Recurrent Neural Network or RNN which, unlike attention, doesn’t have the flexibility to look at the entire text sequence. A RNN contains a recurrent cell which operates on an input problem mentioned earlier, each news article can be represented as a sequence of words. Hence, an RNN with a softmax classifier stacked on top is a good choice to solve this problem. Figure 4-14: A pictorial sequences respectively. This problem requires two RNN networks namely: an encoder network and a decoder network as shown in figure 4-15. The encoder RNN transforms the english sequence to a latent representation0 码力 | 53 页 | 3.92 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationfed to a softmax layer to choose from a discrete set of choices. Figure 7-5: The architecture of an RNN controller for NAS. Each time step outputs a token . The output token is fed as input to the next expectation maximization problem. Given a set of actions which produce a child network with an accuracy , an RNN controller maximizes the expected reward (accuracy) represented as follows: They used a policy gradient which provide a good accuracy-latency tradeoff. Overall, it still followed the fundamental design of a RNN based controller similar to its predecessors. The idea to design block and cell structures by predicting0 码力 | 33 页 | 2.48 MB | 1 年前3
Keras: 基于 Python 的深度学习库3.3.14 如何「冻结」网络层? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.15 如何使用有状态 RNN (stateful RNNs)? . . . . . . . . . . . . . . . . . . . . 33 3.3.16 如何从 Sequential 模型中移除一个层? . . . 循环层 Recurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.6.1 RNN [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.6.2 SimpleRNN 在验证集的误差不再下降时,如何中断训练? • 验证集划分是如何计算的? • 在训练过程中数据是否会混洗? • 如何在每个 epoch 后记录训练集和验证集的误差和准确率? • 如何「冻结」网络层? • 如何使用有状态 RNN (stateful RNNs)? • 如何从 Sequential 模型中移除一个层? • 如何在 Keras 中使用预训练的模型? • 如何在 Keras 中使用 HDF5 输入? • Keras0 码力 | 257 页 | 1.19 MB | 1 年前3
keras tutorial.................................................................. 13 Recurrent Neural Network (RNN) ................................................................................................. .............................................. 77 14. Keras ― Time Series Prediction using LSTM RNN .................................................................................... 83 15. Keras used to output the data (e.g. classification of image) Recurrent Neural Network (RNN) Recurrent Neural Networks (RNN) are useful to address the flaw in other ANN models. Well, Most of the ANN doesn’t0 码力 | 98 页 | 1.57 MB | 1 年前3
PyTorch Release Notescontainer. ‣ When possible PyTorch will now automatically use cuDNN persistent RNN’s providing improved speed for smaller RNN’s. ‣ Improved multi-GPU performance in both PyTorch c10d and Apex’s DDP. ‣ PyTorch Release 18.02 PyTorch RN-08516-001_v23.07 | 348 Known Issues cuBLAS 9.0.282 regresses RNN seq2seq FP16 performance for a small subset of input sizes. This issue should be fixed in the next version of NCCL ‣ Ubuntu 16.04 with December 2017 updates Known Issues cuBLAS 9.0.282 regresses RNN seq2seq FP16 performance for a small subset of input sizes. As a workaround, revert back to the 110 码力 | 365 页 | 2.94 MB | 1 年前3
Machine Learningare a specialized kind of feedforward network • It can be extended to recurrent neural networks (RNN) by involving feedback connections, which power many natural language applications 2 / 19 Neuron0 码力 | 19 页 | 944.40 KB | 1 年前3
共 6 条
- 1













