Keras: 基于 Python 的深度学习库. . . . . 12 3.1.5.4 基于 LSTM 的序列分类: . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.5.5 基于 1D 卷积的序列分类: . . . . . . . . . . . . . . . . . . . . . . 14 3.1.5.6 基于栈式 LSTM 的序列分类 . . . . . . . . . . . . . . . . . . . . . 14 3.1.5.7 带有状态 (stateful) 的相同的栈式 LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 开始使用 5.6.3 GRU [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6.4 LSTM [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.6.5 ConvLSTM2D0 码力 | 257 页 | 1.19 MB | 1 年前3
keras tutorial................................................... 77 14. Keras ― Time Series Prediction using LSTM RNN .................................................................................... 83 15. layers Create layers to add model: from keras.layers import LSTM, Dense # add a sequence of vectors of dimension 16 model.add(LSTM(16, return_sequences=True)) model.add(Dense(10, activation='softmax')) range. Keras 83 In this chapter, let us write a simple Long Short Term Memory (LSTM) based RNN to do sequence analysis. A sequence is a set of values where each value corresponds to0 码力 | 98 页 | 1.57 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning TechniquesIt is short and simple. It has two bidirectional LSTM (Long Short-Term Memory Layer) layers and two dense layers interleaved with dropouts. The LSTM layers help to learn the probabilities of words occurring Sequential([ layers.Bidirectional( layers.LSTM(64, return_sequences=True), input_shape=(MAX_SEQ_LEN, WORD2VEC_LEN) ), layers.Dropout(0.5), layers.Bidirectional(layers.LSTM(32, return_sequences=False)), layers synthetic data was added to the training mix. Dataset Improvement(%) with various models BERT SVM LSTM ATIS (Flight Reservations) 58.5 58.7 16.2 15 Radford, Alec, et al. "Language models are unsupervised0 码力 | 56 页 | 18.93 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesof size N, and an embedding table of shape (N, d). pQRNN demonstrated a model 140x smaller than an LSTM with pre-trained embeddings. An on-device friendly implementation of pQRNN is available in the Tensorflow vanishing gradients. This led to the rise of novel cell designs like Long and Short Term Memory19 (LSTM) and Gated Recurrent Unit20 (GRU) cells. However, RNNs are slow to train because of their sequential0 码力 | 53 页 | 3.92 MB | 1 年前3
人工智能发展史ca/~vincentp/ift3395/lectures/backprop_old.pdf https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf LSTM: 1997 ▪ Long memory https://github.com/dzitkowskik/StockPredictionRNN/blob/master/docs/Hochreiter97_lst0 码力 | 54 页 | 3.87 MB | 1 年前3
PyTorch Tutorialsentences. Instead of padding the sentence to a fixed length, we create graphs with different number of LSTM cells based on the sentence’s length. PyTorch • Fundamental Concepts of PyTorch • Tensors • Autograd0 码力 | 38 页 | 4.09 MB | 1 年前3
PyTorch Release Notesconvolutions and GEMMs on Volta hardware ‣ The examples directory contains examples of ImageNet and LSTM training scripts that use FP16 data, as well as show how to train with FP16 ‣ Matrix multiplication0 码力 | 365 页 | 2.94 MB | 1 年前3
共 7 条
- 1













