积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(7)机器学习(7)

语言

全部英语(7)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.034 秒,为您找到相关结果约 7 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . 12 3.1.5.4 基于 LSTM 的序列分类: . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.5.5 基于 1D 卷积的序列分类: . . . . . . . . . . . . . . . . . . . . . . 14 3.1.5.6 基于栈式 LSTM 的序列分类 . . . . . . . . . . . . . . . . . . . . . 14 3.1.5.7 带有状态 (stateful) 的相同的栈式 LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 开始使用 5.6.3 GRU [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6.4 LSTM [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.6.5 ConvLSTM2D
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 keras tutorial

    ................................................... 77 14. Keras ― Time Series Prediction using LSTM RNN .................................................................................... 83 15. layers Create layers to add model: from keras.layers import LSTM, Dense # add a sequence of vectors of dimension 16 model.add(LSTM(16, return_sequences=True)) model.add(Dense(10, activation='softmax')) range. Keras 83 In this chapter, let us write a simple Long Short Term Memory (LSTM) based RNN to do sequence analysis. A sequence is a set of values where each value corresponds to
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    It is short and simple. It has two bidirectional LSTM (Long Short-Term Memory Layer) layers and two dense layers interleaved with dropouts. The LSTM layers help to learn the probabilities of words occurring Sequential([ layers.Bidirectional( layers.LSTM(64, return_sequences=True), input_shape=(MAX_SEQ_LEN, WORD2VEC_LEN) ), layers.Dropout(0.5), layers.Bidirectional(layers.LSTM(32, return_sequences=False)), layers synthetic data was added to the training mix. Dataset Improvement(%) with various models BERT SVM LSTM ATIS (Flight Reservations) 58.5 58.7 16.2 15 Radford, Alec, et al. "Language models are unsupervised
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    of size N, and an embedding table of shape (N, d). pQRNN demonstrated a model 140x smaller than an LSTM with pre-trained embeddings. An on-device friendly implementation of pQRNN is available in the Tensorflow vanishing gradients. This led to the rise of novel cell designs like Long and Short Term Memory19 (LSTM) and Gated Recurrent Unit20 (GRU) cells. However, RNNs are slow to train because of their sequential
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 人工智能发展史

    ca/~vincentp/ift3395/lectures/backprop_old.pdf https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf LSTM: 1997 ▪ Long memory https://github.com/dzitkowskik/StockPredictionRNN/blob/master/docs/Hochreiter97_lst
    0 码力 | 54 页 | 3.87 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    sentences. Instead of padding the sentence to a fixed length, we create graphs with different number of LSTM cells based on the sentence’s length. PyTorch • Fundamental Concepts of PyTorch • Tensors • Autograd
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    convolutions and GEMMs on Volta hardware ‣ The examples directory contains examples of ImageNet and LSTM training scripts that use FP16 data, as well as show how to train with FP16 ‣ Matrix multiplication
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 7 条
  • 1
前往
页
相关搜索词
Keras基于Python深度学习kerastutorialEfficientDeepLearningBookEDLChapterTechniquesArchitectures人工智能人工智能发展发展史PyTorchTutorialReleaseNotes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩