积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部前端开发(2)综合其他(2)JavaScript(2)人工智能(2)云计算&大数据(2)RocketMQ(2)数据库(1)系统运维(1)Linux(1)MySQL(1)

语言

全部中文(简体)(8)

格式

全部PDF文档 PDF(7)PPT文档 PPT(1)
 
本次搜索耗时 0.029 秒,为您找到相关结果约 8 个.
  • 全部
  • 前端开发
  • 综合其他
  • JavaScript
  • 人工智能
  • 云计算&大数据
  • RocketMQ
  • 数据库
  • 系统运维
  • Linux
  • MySQL
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Ubuntu 桌面培训 2010

    VI Ubuntu DVD 可以在什么地方下载到? . . . . . . . . . . . . . . . . 488 XI.II.VII根分区(如果 /var 单独分区时是 /var 分区)没有空间 了,可是,我装的软件并不多,这是怎么回事? . . . . . . . . . . 488 XI.II.VIII我安装的是 Beta/RC 版,我可以升级到正式版吗? . . . . . . 489 . . . . . . . . . . . 200 IV.83 编辑填充颜色 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 IV.84 选择一种填充颜色 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 IV.85 自定义填充颜色 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 IV.86 编辑渐变色填充 . . .
    0 码力 | 540 页 | 26.26 MB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    家机制,解决了专家模块工作量不平 衡的问题。 混合专家(MoE)架构 通过低秩压缩减少推理时的内存占用, 同时保持与传统多头注意力(MHA) 相当的性能。MLA在训练中减少了 内存和计算开销,在推理中降低了 KV缓存占用空间。 多头潜在注意力(MLA)机制 通过序列化预测未来多个令牌,增强 模型的上下文建模能力,并支持推测 解码加速推理。MTP在特定场景下同 时预测多个令牌,提高信号密度,减 少上下文漂移和逻辑连贯性问题。 芯片、 云平台、操作系统等产业的发展。 技术深化:突破局限,能力提升 DeepSeek R1展示了强化学习技术和算法创新在 AI 领域的巨大潜力,但其仍然处于发展阶段,存在一定局限性和优化 空间。未来,随着技术的不断进步和创新,DeepSeek R1 可能会在以下几个方面实现进一步的突破: 通用能力提升 解决语言混杂问题 目前,DeepSeek R1在函数调用、多轮 对话、复杂角色扮演和 减少选择困难,提高购 买效率。 滑雪板选购分析 场景应用 消费趋势预测 产品定位与定价策略 个性化营销策略 应用场景3:消费决策,个性推荐 用户诉求:拟购买滑雪板,对滑板的使用场景、款式、颜色、价位、适用场 景、预计购买国家提出要求,指定DeepResearch给出建议 问题识别 面对海量市场数据, DeepResearch识 别用户的关键信息 并进行网络信息匹 配。 解决方案 利用DeepResearch的智
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 JavaScript 正则表达式迷你书 老姚 - v1.1

    案例分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5.1. 匹配 16 进制颜色值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5.2. 匹配时间 . . . . . . . . . 面的就不再尝试了。 1.5. 案例分析 匹配字符,无非就是字符组、量词和分支结构的组合使用罢了。 下面找几个例子演练一下(其中,每个正则并不是只有唯一写法): 1.5.1. 匹配 16 进制颜色值 要求匹配: #ffbbad #Fc01DF #FFF #ffE 分析: 表示一个 16 进制字符,可以用字符组 [0-9a-fA-F]。 其中字符可以出现 3 或 6 次,需要是用量词和分支结构。 第三章 正则表达式括号的作用 | 第 27 页 对比这两个可视化图片,我们发现,与前者相比,后者多了分组编号,如 Group #1。 其实正则引擎也是这么做的,在匹配过程中,给每一个分组都开辟一个空间,用来存储每一个分组匹配到的 数据。 既然分组可以捕获数据,那么我们就可以使用它们。 3.2.1. 提取数据 比如提取出年、月、日,可以这么做: var regex = /(\d{4})-(\d{2})-(\d{2})/;
    0 码力 | 89 页 | 3.42 MB | 11 月前
    3
  • pdf文档 JavaScript 正则表达式迷你书 老姚 - v1.0

    案例分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5.1. 匹配 16 进制颜色值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5.2. 匹配时间 . . . . . . . . . 面的就不再尝试了。 1.5. 案例分析 匹配字符,无非就是字符组、量词和分支结构的组合使用罢了。 下面找几个例子演练一下(其中,每个正则并不是只有唯一写法): 1.5.1. 匹配 16 进制颜色值 要求匹配: #ffbbad #Fc01DF #FFF #ffE 分析: 表示一个 16 进制字符,可以用字符组 [0-9a-fA-F]。 其中字符可以出现 3 或 6 次,需要是用量词和分支结构。 第三章 正则表达式括号的作用 | 第 27 页 对比这两个可视化图片,我们发现,与前者相比,后者多了分组编号,如 Group #1。 其实正则引擎也是这么做的,在匹配过程中,给每一个分组都开辟一个空间,用来存储每一个分组匹配到的 数据。 既然分组可以捕获数据,那么我们就可以使用它们。 3.2.1. 提取数据 比如提取出年、月、日,可以这么做: var regex = /(\d{4})-(\d{2})-(\d{2})/;
    0 码力 | 89 页 | 3.42 MB | 11 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    设计清晰、精确的提示语结构 创意引导能力 设计能激发AI创新思维的提示语 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 可验证性 ▪ 迭代空间 ▪ 输出格式 ▪ 难度适中 ▪ 多样性考虑 常见陷阱与应对:新手必知的提示语设计误区 挖掘反向思维:从非传统角度切入 创新设计策略: ▪ 设定逆向任务:提示语可以引导AI从相反的角度处理问题,提供不同于传统生成的内容。 ▪ 挑战预设思维模式:通过打破任务的常规设定,促使AI生成具有挑战性和创新性的内容。 灵活运用任务开放性:给AI自由发挥的空间 创新设计策略: 创新设计策略: ▪ 设定基本框架,留出探索余地:提示语应提供一个结构化的框架,包含具体的生成目标,但不应过度限制表 达方式或细节内容,给AI足够的空间进行创造。 ▪ 多维度任务引导:通过引导AI从多个角度看待问题,激发其对生成内容的多样化思考。 AI缺陷:臆造之辞 概率幻觉 AI幻觉(AI Hallucinations)是指生成式人工智能 模型在生成文本或回答问题时,尽管表面上呈现出逻 辑性
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • ppt文档 谈谈MYSQL那点事

    少的字段就不用大字段。比如,主键,强烈建议用 int 整型 . 不用 bigint ,为什么 ? 省空间啊。空间是什么 ? 空间就是效率!按 4 个字节和按 32 个字节定位一条记 录,谁快谁慢太明显了。涉及几个表做 join 时, 效果 就更明显了。更小的字段类型占用的内存就更少,占用 的磁盘空间和磁盘 I/O 也会更少,而且还会占用更少的 带宽。因此 . 在日常选择字段时必须要遵守这一规则。
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • pdf文档 RocketMQ v3.2.4 开发指南

    值相等但 key 丌等, 出亍性能的考虑冲突的检测放到客户端处理(key 的原始值是存储在消息文件中的,避免对数据文件的解析), 客户端比较一次消息体的 key 是否相同。 5. 存储;为了节省空间索引项中存储的时间是时间差值(存储时间-开始时间,开始时间存储在索引文件头中), 整个索引文件是定长的,结构也是固定的。索引文件存储结构参见图 7.4.3-3 。 7.4 服务器消息过滤 RocketMQ Tag 字 符串,而丌是 Hashcode。 为什举过滤要返样做? (1). Message Tag 存储 Hashcode,是为了在 Consume Queue 定长方式存储,节约空间。 项目开源主页:https://github.com/alibaba/RocketMQ 22 (2). 过滤过程中丌会访问 Commit Log 数据,可以保证堆积情冴下也能高效过滤。
    0 码力 | 52 页 | 1.61 MB | 1 年前
    3
  • pdf文档 消息中间件RocketMQ原理解析 - 斩秋

    Transaction Offset 表示是 prepared 状态的事物消息 + 4 + bodyLength // 前 4 个字节存放消息体大小值, 后 bodylength 大小 空间存储了消息体内容 + 1 + topicLength //一个字节存放 topic 名称能容大小, 后存放了 topic 的 内容 + 2 + propertiesLength
    0 码力 | 57 页 | 2.39 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
Ubuntu桌面培训清华大学DeepSeekDeepResearch科研JavaScript正则表达达式表达式正则表达式迷你1.1清华华大大学入门精通MySQLRocketMQ开发指南消息中间中间件消息中间件原理解析
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩