清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet 平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。 多模态支持:支持文本和 图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1 高效推理:专注于低延迟和 高吞吐量,适合实时应用。 轻量化设计:模型结构优化, 资源占用少,适合边缘设备 如文本生成、分类和问答。 Kimi k1.5 垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini 小型化设计:轻量级模型, 适合资源有限的环境。 快速响应:优化推理速度, 适合实时交互场景。 通用性强:适用于多种自 5支持联网查询网址,Claude 3.5 sonnet暂不支持; 四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表; 在复杂爬虫任务上,DeepSeek R1与Open AI o3min生成的代码均能正常执行数据采集任务,o3响应速度更快,R1数据采集结果更加完 整准确;其他2个模型都存在多次调试但代码仍然运行不成功的问题,如代码中罗列URL不全、输出文本中提取数据为空等。0 码力 | 85 页 | 8.31 MB | 8 月前3
清华大学 DeepSeek 从入门到精通DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务0 码力 | 103 页 | 5.40 MB | 9 月前3
RocketMQ v3.2.4 开发指南..................................................................................... 44 14.3.4 优化每条消息消费过程 .......................................................................................... CORBA Notification 规范中,无此消费方式。 在 JMS 规范中,JMS point-to-point model 不乀类似,但是 RocketMQ 的集群消费功能大等亍 PTP 模型。 因为 RocketMQ 单个 Consumer Group 内的消费者类似亍 PTP,但是一个 Topic/Queue 可以被多个 Consumer Group 消费。 顺序消息 TOPIC_A TOPIC_B Producer Producer Consumer Consumer Consumer 图表 5-1 RocketMQ 是什么 是一个队列模型的消息中间件,具有高性能、高可靠、高实时、分布式特点。 Producer、Consumer、队列都可以分布式。 Producer 吐一些队列轮流収送消息,队列集合称为 Topic,Consumer0 码力 | 52 页 | 1.61 MB | 1 年前3
基于 KUBERNETES 的 容器器 + AI 平台⽣生产级镜像仓库解决⽅方案,基于 • ⼀一键⾼高可⽤用部署和维护 • 为多租户和复杂权限集成⽽而增强 『token service』 • 管理理基于规则的镜像仓库 • 其他企业需要的优化功能 企业典型的多租户模型 租户 Tenant User User group Namespace Deployment Registry project CI/CD workspace • https://github.com/caicloud/cyclone Cyclone 技术架构 云原⽣生 CI/CD 引擎 设计 - 云原⽣生,k8s 亲和性 性能 - 为企业场景优化 扩展性 - ⽀支持 AI ⼯工作流 运⾏行行 AI 应⽤用 KUBEFLOW 的应⽤用 • Kubeflow 社区的联合创始⼈人 • kubeflow/tf-operator • 定义 TensorFlow 任务运⾏行行状态 • ⽀支持分布式 TensorFlow 任务 KUBEFLOW 之上 • 借⼒力力容器器平台提供⽣生产级的集群资源管理理 • ⼯工作区隔离与共享 • 数据、模型、环境、应⽤用等 • 全⾯面⽀支持 AI ⼯工作流 • 探索开发 • 线上运⾏行行 关注并回复 kubecon18 P7 展台0 码力 | 19 页 | 3.55 MB | 1 年前3
Ubuntu 桌面培训 2010强调 Ubuntu 和其他操作系统不同,默认桌面是绝对干净的。用户可以根据喜好自由 地在桌面上添加文件和程序图标。 GNOME 是 Ubuntu 的默认桌面环境。 GNOME (GNU 网络对象模型环境,GNU Network Object Model Environment)是一个国际性的项目,为开发完整的,由自 由软件组成的桌面环境而努力。桌面环境,即图形用户界面,是计算机系统中最外层 的软件。GNOME 期效果制作,也可以作为一款图形编辑器,在无需编程的环境下定义互动行 为。Blender 有一个独特的用户界面,它完全在 OpenGL 下实现且优化了运行速 度。Blender 中可以使用 Python 脚本绑定,并针对常用的文件格式实现了导 入/导出功能,例如 3D Studio。Blender 还可以生成图像、动画和模型,供给游 戏或其他第三方引擎使用,它以独立的二进制文件或网页插件的形式提供互动内 容。想获得关于 Blender VII.I Canonical 提供的专业支持服务 Canonical 全球支持服务为客户提供 7x24 小时服 务。全球支持服务团队以其丰富的经验和知识帮助用户安装和维护全新的平台和应用 程序。小至优化桌面程序,大到为大型应用提供支持,全球支持服务团队随时都可以 为您解决使用 Ubuntu 过程中遇到的问题。 Ubuntu 帮助和支持 459 Ubuntu 桌面培训 目录 您可以获得对桌面系0 码力 | 540 页 | 26.26 MB | 1 年前3
谈谈MYSQL那点事互联网常用数据库市场占有率 互联网通用架构体制 谈谈 MySQL 数据库那些事 MySQL MySQL 基本介绍 基本介绍 MySQL MySQL 优化方式 优化方式 MySQL MySQL 技巧分享 技巧分享 Q Q & & AA MyISAM MyISAM 特点 特点 MyISAM vs MyISAM vs InnoDB InnoDB • 数据存储方式简单,使用 台数据库服务器,也许会增加采 购压力,但是我们可以提供更好的对外数据服务的能力和 途径,实际中尽可能两者兼顾。 MySQL 架构设计—高可用架构 系统优化:硬件、架构 系统优化:硬件、架构 服务优化 服务优化 应用优化 应用优化 MySQL MySQL 优化方式 优化方式 影响性能的因素 影响性能的因素 应用程序 应用程序 查询 查询 事务管理 事务管理 数据库设计 数据库设计 数据分布 读写分离;数据库分表、数据库切片(分 读写分离;数据库分表、数据库切片(分 布式),也考虑使用相应缓存服务帮助 布式),也考虑使用相应缓存服务帮助 MySQL MySQL 缓解访问 缓解访问 压力 压力 系统优化 系统优化 配置合理的 配置合理的 MySQL MySQL 服务器,尽量在应用本身达到一 服务器,尽量在应用本身达到一 个 个 MySQL MySQL 最合理的使用 最合理的使用 针对 针对0 码力 | 38 页 | 2.04 MB | 1 年前3
MySQL 8.0.17 调优指南(openEuler 20.09)......................................................................................... 7 3.9 内核优化................................................................................................... 性能调优从大的方面来说,在系统设计之初,需要考虑硬件的选择,操作系统的选 择,基础软件的选择;从小的方面来说,包括每个子系统的设计,算法选择,如何使 用编译器的选项,如何发挥硬件最大的性能等等。 在性能优化时,我们必须遵循一定的原则,否则,有可能得不到正确的调优结果。主 要有以下几个方面: ● 对性能进行分析时,要多方面分析系统的资源瓶颈所在,因为系统某一方面性能 低,也许并不是它自己造成的,而是其 调优过程是迭代渐进的过程,每一次调优的结果都要反馈到后续的代码开发中 去。 ● 性能调优不能以牺牲代码的可读性和可维护性为代价。 1.3 调优思路 性能优化首先要较为精准的定位问题,分析系统性能瓶颈,然后根据其性能指标以及 所处层级选择优化的方式方法。 下面介绍MySQL数据库具体的调优思路和分析过程,如图1所示。 调优分析思路如下: 1. 很多情况下压测流量并没有完全进入到服务端,在网络上可能就会出现由于各种0 码力 | 11 页 | 223.31 KB | 1 年前3
2022 Apache Ozone 的最近进展和实践分享• Apache Ozone适⽤场景 • Apache Ozone的最近进展 • Apache Ozone的实践分享 新进展 • ⽂件系统优化(FSO) • Ozone Balancer • 纠删码 • 单数据盘单RocksDB实例 ⽂件系统优化(FSO) dir1 dir2 dir3 file-1 file-1M 100万个⽂件 vol/buck1 Key entry /vol/buck1/dir1/ Key的存储 ⽬录 ⽂件 删除/重命名⽬录 耗时 对象存储:采⽤ KV ⽅式管理对象元数据,⽆ 需管理元数据之间的关系 ⽂件系统:额外地,需要采⽤树结构作为索 引,管理元数据之间的关系 ⽂件系统优化 ● FILE_SYSTEM_OPTIMIZED (FSO) : ⽀持纯粹的⽂件语义, 有限的 S3 兼容性 ⽂件的存储Key格式: “/ ” 所有已存在的桶,升级后变成LEGACY 版本,以⽀持向后兼容 存储Key格式基本同OBS, 通过配置项区分偏向⽂件,还是偏向S3对象的⽀持 引⼊Bucket级别 OM Metadata Layout 版本号 ⽂件系统优化 ⽂件系统优化效果 Query Details: Dropped “catelog_sales” table with sub- paths(files/dirs) count = 5K Query 0 码力 | 35 页 | 2.57 MB | 1 年前3
JavaScript 正则表达式迷你书 老姚 - v1.1match(regex)[0]); // => id="container" 当然,这样也会有个问题。效率比较低,因为其匹配原理会涉及到“回溯”这个概念(这里也只是顺便提一 下,第四章会详细说明)。可以优化如下: var regex = /id="[^"]*"/ var string = ''; console.log(string 和判空。那样的话,也许那个错误正则也就够用了。也可以进一步改写成: /^[+-]?(\d+)?(\.)?\d+$/,这样我们就需要考虑可读性和可维护性了。 6.4. 效率 保证了准确性后,才需要是否要考虑要优化。大多数情形是不需要优化的,除非运行的非常慢。什么情形正 则表达式运行才慢呢?我们需要考察正则表达式的运行过程(原理)。 正则表达式的运行分为如下的阶段: • 1. 编译; • 2. 设定起始位置; • 失败,返回 null。同时设 置 lastIndex 为 0,即,如要再尝试匹配的话,需从头开始。 从上面可以看出,匹配会出现效率问题,主要出现在上面的第 3 阶段和第 4 阶段。 因此,主要优化手法也是针对这两阶段的。 6.4.1. 使用具体型字符组来代替通配符,来消除回溯 而在第三阶段,最大的问题就是回溯。 例如,匹配双引用号之间的字符。如,匹配字符串 123"abc"456 中的0 码力 | 89 页 | 3.42 MB | 11 月前3
JavaScript 正则表达式迷你书 老姚 - v1.0match(regex)[0]); // => id="container" 当然,这样也会有个问题。效率比较低,因为其匹配原理会涉及到“回溯”这个概念(这里也只是顺便提一 下,第四章会详细说明)。可以优化如下: var regex = /id="[^"]*"/ var string = ''; console.log(string 和判空。那样的话,也许那个错误正则也就够用了。也可以进一步改写成: /^[-]?(\d)?(\.)?\d+$/,这样我们就需要考虑可读性和可维护性了。 6.4. 效率 保证了准确性后,才需要是否要考虑要优化。大多数情形是不需要优化的,除非运行的非常慢。什么情形正 则表达式运行才慢呢?我们需要考察正则表达式的运行过程(原理)。 正则表达式的运行分为如下的阶段: • 1. 编译; • 2. 设定起始位置; • 失败,返回 null。同时设 置 lastIndex 为 0,即,如要再尝试匹配的话,需从头开始。 从上面可以看出,匹配会出现效率问题,主要出现在上面的第 3 阶段和第 4 阶段。 因此,主要优化手法也是针对这两阶段的。 6.4.1. 使用具体型字符组来代替通配符,来消除回溯 而在第三阶段,最大的问题就是回溯。 例如,匹配双引用号之间的字符。如,匹配字符串 123"abc"456 中的0 码力 | 89 页 | 3.42 MB | 11 月前3
共 15 条
- 1
- 2













