积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(5)MySQL(5)云计算&大数据(5)前端开发(3)综合其他(2)JavaScript(2)人工智能(2)RocketMQ(2)后端开发(1)系统运维(1)

语言

全部中文(简体)(17)

格式

全部PDF文档 PDF(16)PPT文档 PPT(1)
 
本次搜索耗时 0.028 秒,为您找到相关结果约 17 个.
  • 全部
  • 数据库
  • MySQL
  • 云计算&大数据
  • 前端开发
  • 综合其他
  • JavaScript
  • 人工智能
  • RocketMQ
  • 后端开发
  • 系统运维
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 谈谈MYSQL那点事

    互联网常用数据库市场占有率 互联网通用架构体制 谈谈 MySQL 数据库那些事  MySQL MySQL 基本介绍 基本介绍  MySQL MySQL 优化方式 优化方式  MySQL MySQL 技巧分享 技巧分享  Q Q & & AA MyISAM MyISAM 特点 特点 MyISAM vs MyISAM vs InnoDB InnoDB • 数据存储方式简单,使用 文件引擎中速度最快的 • 不支持一些数据库特性,比如 事务、外键约束等 不支持一些数据库特性,比如 事务、外键约束等 • Table level lock Table level lock ,性能稍差,更适合读取多的操作 ,性能稍差,更适合读取多的操作 InnoDB InnoDB 特点 特点 •使用 使用 Table Space Table Space 的方式来进行数据存储 的方式来进行数据存储 ib_logfile0) • 支持 事务、外键约束等数据库特性 支持 事务、外键约束等数据库特性 • Rows level lock , Rows level lock , 读写性能都非常优秀 读写性能都非常优秀 • 能够承载大数据量的存储和访问 能够承载大数据量的存储和访问 • 拥有自己独立的缓冲池,能够缓存数据和索引 拥有自己独立的缓冲池,能够缓存数据和索引 MySQL 架构设计—应用架构
    0 码力 | 38 页 | 2.04 MB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 数据呈现的“画龙点睛” Open AI o3mini 直接调用 DALLE 生成图表,Kimi k1.5 提 供 Python 代码支持,Claude 3.5 Sonnet 负责图表逻辑优化 数据采集 数据预处理 数据分析 可视化呈现 新思路:DeepSeek R1的数据应用 中 文 数 据 处 理 优 势 创 意 写 作 生 成 能 力 数 据 读 取 分 析 能 力 低
    0 码力 | 85 页 | 8.31 MB | 7 月前
    3
  • pdf文档 MySQL 8.0.17 调优指南(openEuler 20.09)

    ......................................................................................... 7 3.9 内核优化................................................................................................... 2 调优原则 性能调优从大的方面来说,在系统设计之初,需要考虑硬件的选择,操作系统的选 择,基础软件的选择;从小的方面来说,包括每个子系统的设计,算法选择,如何使 用编译器的选项,如何发挥硬件最大的性能等等。 在性能优化时,我们必须遵循一定的原则,否则,有可能得不到正确的调优结果。主 要有以下几个方面: ● 对性能进行分析时,要多方面分析系统的资源瓶颈所在,因为系统某一方面性能 低,也许并不是 低,也许并不是它自己造成的,而是其他方面造成的。如CPU利用率是100%时, 很可能是内存容量太小,因为CPU忙于处理内存调度。 ● 一次只对影响性能的某方面的一个参数进行调整,多个参数同时调整的话,很难 界定性能的影响是由哪个参数造成的。 ● 由于在进行系统性能分析时,性能分析工具本身会占用一定的系统资源,如CPU 资源、内存资源等等。我们必须注意到这点,即分析工具本身运行可能会导致系 统某方面的资源瓶颈情况更加严重。
    0 码力 | 11 页 | 223.31 KB | 1 年前
    3
  • pdf文档 RocketMQ v3.2.4 开发指南

    ..................................................................................... 44 14.3.4 优化每条消息消费过程 .......................................................................................... 65535,返种优兇级问题一般使用丌同 topic 解决就非常丌合 项目开源主页:https://github.com/alibaba/RocketMQ 5 适。如果要让 MQ 解决此问题,会对 MQ 的性能造成非常大的影响。返里要确保一点,业务上是否确实需 要返种严格的优兇级,如果将优兇级压缩成几个,对业务的影响有多大? 4.3 Message Order 消息有序挃的是一类消息消费时,能挄 挂掉重启后仍然能将乀前内存的数据恢复出来。 JMS 不 CORBA Notification 规范没有明确说明如何持丽化,但是持丽化部分的性能直接决定了整个消息中间件 的性能。 RocketMQ 参考了 Kafka 的持丽化方式,充分利用 Linux 文件系统内存 cache 来提高性能。 4.6 Message Reliablity 影响消息可靠性的几种情冴: (1). Broker 正常关闭
    0 码力 | 52 页 | 1.61 MB | 1 年前
    3
  • pdf文档 2022 Apache Ozone 的最近进展和实践分享

    Ozone的实践分享 ⼤数据存储的需求 能否提供⾼并发读取和写⼊ 是否兼容主流API,如HDFS/S3 是否可以扩展⾄数百PB的存储容量,数千个 物理节点以及数⼗亿个对象 扩展性 API 兼容性 性能 是否⽀持存算分离架构同时也可以兼容存算耦合 架构 应⽤对接 安全 加密 HDFS现有的⼀些解决⽅案 Namenode Federation Router Based Federation • Apache Ozone适⽤场景 • Apache Ozone的最近进展 • Apache Ozone的实践分享 新进展 • ⽂件系统优化(FSO) • Ozone Balancer • 纠删码 • 单数据盘单RocksDB实例 ⽂件系统优化(FSO) dir1 dir2 dir3 file-1 file-1M 100万个⽂件 vol/buck1 Key entry /vol/buck1/dir1/ Key的存储 ⽬录 ⽂件 删除/重命名⽬录 耗时 对象存储:采⽤ KV ⽅式管理对象元数据,⽆ 需管理元数据之间的关系 ⽂件系统:额外地,需要采⽤树结构作为索 引,管理元数据之间的关系 ⽂件系统优化 ● FILE_SYSTEM_OPTIMIZED (FSO) : ⽀持纯粹的⽂件语义, 有限的 S3 兼容性 ⽂件的存储Key格式: “/”
    0 码力 | 35 页 | 2.57 MB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(O 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 基于 KUBERNETES 的 容器器 + AI 平台

    ⽣生产级镜像仓库解决⽅方案,基于 • ⼀一键⾼高可⽤用部署和维护 • 为多租户和复杂权限集成⽽而增强 『token service』 • 管理理基于规则的镜像仓库 • 其他企业需要的优化功能 企业典型的多租户模型 租户 Tenant User User group Namespace Deployment Registry 
 project CI/CD workspace • 开源 • https://github.com/caicloud/cyclone Cyclone 技术架构 云原⽣生 CI/CD 引擎 设计 - 云原⽣生,k8s 亲和性 性能 - 为企业场景优化 扩展性 - ⽀支持 AI ⼯工作流 运⾏行行 AI 应⽤用 KUBEFLOW 的应⽤用 • Kubeflow 社区的联合创始⼈人 • kubeflow/tf-operator
    0 码力 | 19 页 | 3.55 MB | 1 年前
    3
  • pdf文档 JavaScript 正则表达式迷你书 老姚 - v1.1

    match(regex)[0]); // => id="container" 当然,这样也会有个问题。效率比较低,因为其匹配原理会涉及到“回溯”这个概念(这里也只是顺便提一 下,第四章会详细说明)。可以优化如下: var regex = /id="[^"]*"/ var string = '
    '; console.log(string 和判空。那样的话,也许那个错误正则也就够用了。也可以进一步改写成: /^[+-]?(\d+)?(\.)?\d+$/,这样我们就需要考虑可读性和可维护性了。 6.4. 效率 保证了准确性后,才需要是否要考虑要优化。大多数情形是不需要优化的,除非运行的非常慢。什么情形正 则表达式运行才慢呢?我们需要考察正则表达式的运行过程(原理)。 正则表达式的运行分为如下的阶段: • 1. 编译; • 2. 设定起始位置; • 失败,返回 null。同时设 置 lastIndex 为 0,即,如要再尝试匹配的话,需从头开始。 从上面可以看出,匹配会出现效率问题,主要出现在上面的第 3 阶段和第 4 阶段。 因此,主要优化手法也是针对这两阶段的。 6.4.1. 使用具体型字符组来代替通配符,来消除回溯 而在第三阶段,最大的问题就是回溯。 例如,匹配双引用号之间的字符。如,匹配字符串 123"abc"456 中的
    0 码力 | 89 页 | 3.42 MB | 10 月前
    3
  • pdf文档 JavaScript 正则表达式迷你书 老姚 - v1.0

    match(regex)[0]); // => id="container" 当然,这样也会有个问题。效率比较低,因为其匹配原理会涉及到“回溯”这个概念(这里也只是顺便提一 下,第四章会详细说明)。可以优化如下: var regex = /id="[^"]*"/ var string = '
    '; console.log(string 和判空。那样的话,也许那个错误正则也就够用了。也可以进一步改写成: /^[-]?(\d)?(\.)?\d+$/,这样我们就需要考虑可读性和可维护性了。 6.4. 效率 保证了准确性后,才需要是否要考虑要优化。大多数情形是不需要优化的,除非运行的非常慢。什么情形正 则表达式运行才慢呢?我们需要考察正则表达式的运行过程(原理)。 正则表达式的运行分为如下的阶段: • 1. 编译; • 2. 设定起始位置; • 失败,返回 null。同时设 置 lastIndex 为 0,即,如要再尝试匹配的话,需从头开始。 从上面可以看出,匹配会出现效率问题,主要出现在上面的第 3 阶段和第 4 阶段。 因此,主要优化手法也是针对这两阶段的。 6.4.1. 使用具体型字符组来代替通配符,来消除回溯 而在第三阶段,最大的问题就是回溯。 例如,匹配双引用号之间的字符。如,匹配字符串 123"abc"456 中的
    0 码力 | 89 页 | 3.42 MB | 10 月前
    3
  • pdf文档 Ubuntu 桌面培训 2010

    的样子的。 自由分发的源代码的想法是为了鼓励人们自愿地、相互协同地开发软件。用户不断参 与增强软件、修复缺陷、开发新功能并且和其他人分享。 大量的程序员参与到软件协作开发之中,用户可以获得质量和性能比专有软件更好的 开源软件。开源软件鼓励用户对软件进行自定义,使其满足自身需要。这是一个巨大 的进步,软件不再是一成不变的。 2 自由软件运动、开源和 Linux 目录 Lucid Lynx 盘启动并 运行系统。如果您喜欢它,再安装;如果不,您还可以把它送给需要的朋友。Live CD 在恢复系统时也很有用。 二者的安装都比较简单,运行安装光盘然后启动电脑,安装所花费时间取决于计算 机的性能,平均需要 10 到 20 分钟。 • 软件安装在 Ubuntu 中,您可以使用 Ubuntu 软件中心和新立得软件包管理器来 添加软件。在 Ubuntu 软件中心里您可以从 Ubuntu 推荐的自由软件中选择您想 您可以从其 中选择一个。 探索 Ubuntu 桌面 53 Ubuntu 桌面培训 目录 图 II.36 配 置 视 觉 效 果 如果您想要一个没有任何特效的普通桌面,选择无。如果您想要一个在性能和外观之 间平衡的桌面,选择正常。如果您想要更丰富的桌面效果,比如窗口抖动、桌面立方 体等等,选择扩展。比如说窗口抖动效果,在您等待更新完成或者邮件客户端收取邮 件的时候,您可以打开窗口抖动特效,那些窗口就会开始舞动和出现
    0 码力 | 540 页 | 26.26 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
MySQL清华大学DeepSeekDeepResearch科研8.017调优指南openEuler20.09RocketMQ开发ApacheOzone最近进展实践分享清华华大大学入门精通KUBERNETESJavaScript正则表达达式表达式正则表达式迷你1.1Ubuntu桌面培训
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩