RocketMQ v3.2.4 开发指南................................................................................. 12 6 RocketMQ 存储特点 ................................................................................................ ...................................................................................... 14 6.3 数据存储结构 ................................................................................................ ..................................... 14 项目开源主页:https://github.com/alibaba/RocketMQ II 6.4 存储目彔结构 ..............................................................................................0 码力 | 52 页 | 1.61 MB | 1 年前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单图示(如文献关键词共现图)直观展示综述内容,帮助 用户更好理解和呈现研究成果。 无数据检索:以现有真实数据库作为支撑,通过关键词 检索,自动搜集相关文献并生成综述报告,目前只支持 英文检索。 低重复率:结合现有查重机制与AI技术,在内容生成阶 段引入重复检测与优化策略,从源头上降低重复率风险, 所生成的综述普通重复率与AIGC重复率均在5%以下。 无限双语数据导入:支持中文与英文文献的导入,并且 文献数 集到的信息来创建文章大纲。 转化文献为连贯文章:可以将现有的文献资料进行分析 和整合,转化为逻辑连贯的新文章,为学者和知识工作 者提供了极大的便利。 多智能体协作对话:Co-STORM模式引入了协作对话 机制,并采用轮次管理策略,实现流畅的协作式AI学术 研究。 用户体验对比:使用步骤 PubScholar平台官网:https://pubscholar.cn/ 输入关键词:进入官网后,在搜索框键入关键词进行文献检索。 现高效计算和推理。DeepSeek通过 无辅助损失的自然负载均衡和共享专 家机制,解决了专家模块工作量不平 衡的问题。 混合专家(MoE)架构 通过低秩压缩减少推理时的内存占用, 同时保持与传统多头注意力(MHA) 相当的性能。MLA在训练中减少了 内存和计算开销,在推理中降低了 KV缓存占用空间。 多头潜在注意力(MLA)机制 通过序列化预测未来多个令牌,增强 模型的上下文建模能力,并支持推测0 码力 | 85 页 | 8.31 MB | 8 月前3
消息中间件RocketMQ原理解析 - 斩秋.......................................................................................... 29 二:消息存储 .................................................................................................. group)定时发送到, brokerAddrTable 集合中列出的 broker 上去 Producer 发送消息只发送到 master 的 broker 机器,在通过 broker 的主从复制机制拷贝到 broker 的 slave 上去 二:Producer 如何发送消息 Producer 轮询某 topic 下的所有队列的方式来实现发送方的负载均衡 commitLog 针对事物消息的处理,消息的第 20 位开始的八位记录是的消息在逻辑队列 中的 queueoffset, 但是针对事物消息为 preparedType 和 rollbackType 的存储的是事物状态 表的索引偏移量 2.2.2 分发事物消息: 分发消息位置信息到 ConsumeQueue : 事物状态为 preparedType 和 rollbackType 的消息0 码力 | 57 页 | 2.39 MB | 1 年前3
清华大学 DeepSeek 从入门到精通识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界 设计实验性提示语,推动AI能力的进化 伦理意识 在提示语中嵌入伦理考量 设计公平、包容的AI交互模式 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界 设计实验性提示语,推动AI能力的进化 伦理意识 在提示语中嵌入伦理考量 设计公平、包容的AI交互模式 常见陷阱与应对:新手必知的提示语设计误区 忽视伦理边界陷阱:低估AI的伦理限制 陷阱症状: ▪ 要求AI生成有争议、不道德或非法内容。 ▪ 对AI的拒绝或警告感到困惑或不满。 ▪ 尝试绕过AI的安全机制。 ▪ 忽视AI输出可能带来的伦理影响。 应对策略: ▪ 了解界限:熟悉AI系统的基本伦理准则和限制。 ▪ 合法合规:确保你的请求符合法律和道德标准。 ▪ 伦理指南:在提示语中明确包含伦理考虑和指导原则。0 码力 | 103 页 | 5.40 MB | 8 月前3
2022 Apache Ozone 的最近进展和实践分享Ozone介绍 • Apache Ozone适⽤场景 • Apache Ozone的最近进展 • Apache Ozone的实践分享 ⼤数据存储的需求 能否提供⾼并发读取和写⼊ 是否兼容主流API,如HDFS/S3 是否可以扩展⾄数百PB的存储容量,数千个 物理节点以及数⼗亿个对象 扩展性 API 兼容性 性能 是否⽀持存算分离架构同时也可以兼容存算耦合 架构 应⽤对接 安全 加密 HDFS现有的⼀些解决⽅案 Namenode Federation Router Based Federation 是否需要⼀个新的⼤数据存储? 现有的对象存储⽅案 ⽆法很好的横向扩展 HDFS的扩展性 达到了上限 ⽆法接受私有化 的数据存储系统 公有云的对象存储服务 ⽆法在线下部署 ⽬录 • Apache Hadoop HDFS⾯临的问题 • Apache Ozone介绍 • Apache Ozone的实践分享 Apache Ozone • Ozone是 ⼀个分布式的KV对象存储 可扩展⾄数⼗亿个对象,从⽽对云原⽣类的应⽤更友好 强⼀致性 与HDFS 和 S3 API兼容 可在存储密集型设备中部署进⽽极⼤的减少设备开⽀ Apache Ozone – 数据存储的路径设计 Ozone的存储路径为 volumes, buckets, 和 keys. Volumes 类似与⽤户账号0 码力 | 35 页 | 2.57 MB | 1 年前3
Apache Pulsar,云原生时代的消息平台 - 翟佳
持久化 - 跨地域复制 • 解除存储计算耦合 • 运维痛点:替换机器、服务扩容、数据 rebalance • 减少⽂件系统依赖 • 性能难保障: 持久化(fsync)、⼀致性(ack: all)、多Topic • IO不隔离:消费者读Backlog的时候会影响其他⽣产者和消费者 streamnative.io Apache Pulsar 特性 • 云原⽣架构: • 存储计算分离 • 分层 + 分⽚ 的⽣态和社区 • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar 的云原⽣架构 • 企业级流存储: BookKeeper streamnative.io Pulsar: 云原⽣的架构 —— 分层 + 分⽚ • 存储和计算分离 • 节点对等 • 独⽴扩展 • 灵活扩容 • 快速容错 streamnative.io Broker 容错 ⽆感知容错 ⽆感知容错 零数据catchup streamnative.io Bookie容错 应⽤⽆感知 并发可控 数据恢复 streamnative.io 瞬时存储扩容 应⽤⽆感知 数据均匀分布 ⽆re-balance Pulsar: 云原⽣的架构优势 https://jack-vanlightly.com/sketches/2018/10/2/kafka-vs-pulsar-rebalancing-sketch0 码力 | 39 页 | 12.71 MB | 6 月前0.03
谈谈MYSQL那点事技巧分享 技巧分享 Q Q & & AA MyISAM MyISAM 特点 特点 MyISAM vs MyISAM vs InnoDB InnoDB • 数据存储方式简单,使用 数据存储方式简单,使用 B+ Tree B+ Tree 进行索引 进行索引 • 使用三个文件定义一个表: 使用三个文件定义一个表: .MYI .MYD .frm .MYI .MYD 的方式来进行数据存储 的方式来进行数据存储 (ibdata1, ib_logfile0) (ibdata1, ib_logfile0) • 支持 事务、外键约束等数据库特性 支持 事务、外键约束等数据库特性 • Rows level lock , Rows level lock , 读写性能都非常优秀 读写性能都非常优秀 • 能够承载大数据量的存储和访问 能够承载大数据量的存储和访问 • 数据分布 网络 网络 操作系统 操作系统 硬件 硬件 使用好的硬件,更快的硬盘、大内存、多核 使用好的硬件,更快的硬盘、大内存、多核 CPU CPU ,专业的 ,专业的 存储服务器( 存储服务器( NAS NAS 、 、 SAN SAN ) ) 设计合理架构,如果 设计合理架构,如果 MySQL MySQL 访问频繁,考虑 访问频繁,考虑 Master/Slave0 码力 | 38 页 | 2.04 MB | 1 年前3
Kubernetes Operator 实践 - MySQL容器化MySQL Operator 设计实践 4. 小结 无状态服务 服务调度 有状态服务集群 服务调度 状态保存 集群管理 有状态服务 服务调度 状态保存 带来的新挑战 服务调度 状态存储 集群管理 成员管理 扩缩容 故障迁移 高可用 CoreOS 提出了 operator Deployment StatefulSet PV/PVC StorageClass ?? WorkQueue:事件合并、过滤、延时、限速 Operator CRD 里有什么 MySQL CRD • Spec:配置 & 期望状态 • Status:当前状态 MySQL 配置 • 版本 • 端口 • 存储信息 • 配置文件 集群配置 • 副本数 • 高可用模式 K8s 调度信息 • 资源套餐 • 亲和性信息 • NodeSelector 使用 CRD 2. client-go 配套工具 0. 创建 CRD 3. 集群管理 2. 调度 pod Ceph MySQL-Operator 数据存储 分布式存储 • 使用 Ceph RBD,基于产品线 创建 StorageClass • 优点:可靠性高,容器漂移时 数据不变 • 缺点:读写延迟较高 本地存储 • 基于 Host Path Volumes • 优点:读写延迟低 • 缺点:单点数据,容器漂移时 数据丢失0 码力 | 42 页 | 4.77 MB | 1 年前3
Ubuntu 桌面培训 2010绝大部分附加软件不会带来 额外费用 • 标准化的操作系统,个性化 选项有限 • 需要为附加的应用程序付费 数据存放 • 方便升级和降级 • 用户数据存储在用户主目录 里 • 方便迁移、复制用户数据和 迁移到另一台计算机上 • 用户数据被分散存储在多个 地方 • 备份和迁移数据较困难 表 I.1 关 键 因 素 14 Ubuntu 和 Microsoft Windows:对比 目录 Lucid 是标准化的操作系统,自定义选项有限。尽管也有数量众多应 用程序,但是绝大部分是专有软件,会带来额外的花费。 图 I.7 桌 面 自 定 义 数据存储 Microsoft Windows 中,用户数据通常被分散存储在多个地方,备份和 迁移数据到另一台计算机上比较困难。Ubuntu 把所有的用户信息都存储在一个地 方——用户主目录,可以很方便的从一台旧的电脑迁移到新电脑上,或者把数据备份 到其他地方。 16 Ubuntu 和 Ubuntu 桌面 29 Ubuntu 桌面培训 目录 图 II.5 “ 位 置 ” 菜 单 注释: 默认情况下,系统将自动为每个用户创建以用户名命名的主目录,里面存储了该用 户所有的配置文件。在一个多用户系统中,每个用户都应把他的个人数据存储在他 30 Ubuntu 桌面组件 目录 Lucid Lynx 的主目录中。 • 系统此菜单供修改计算机设置和访问 Ubuntu 帮助系统。 图 II0 码力 | 540 页 | 26.26 MB | 1 年前3
GPU Resource Management On JDOS可,有完善的周边服务 训练服务 • 提供基于 kubeflow 的分布式训练方案 – 界面化操作,用户提供代码地址和执行命令即可 – 系统内建支持安装 pip 依赖 – 自制存储插件支持分布式文件系统存储用户数据 – 支持官方镜像,不需要 JDOS 提前协助制作镜像 – 提供 tensorboard 作为训练监控实时查看训练状态 – 用户训练完成后释放 GPU 资源,提高 GPU 利用率 限制 + 优先级) • 创建训练 – 用户选择集群提供代码地址和执行命令即可 – 选择所用框架(镜像):支持官方,亦可自制 (提供 dockerfile 生成镜像服务) – 选择存储来源:对接了内部的存储 – 填写代码地址,执行的命令等 – 可以选择是否监控训练,提供 tensorboard 任务列表 可以指定 git 的 commit-id 发起任务 任务详情 可以查看具体的容器列表,以及查看容器的日志和事件0 码力 | 11 页 | 13.40 MB | 1 年前3
共 15 条
- 1
- 2













