RocketMQ v3.2.4 开发指南....................................................................................... 8 4.13 分布式事务 ................................................................................................ ................................................................................. 12 6 RocketMQ 存储特点 ................................................................................................ ...................................................................................... 14 6.3 数据存储结构 ................................................................................................0 码力 | 52 页 | 1.61 MB | 1 年前3
 2022 Apache Ozone 的最近进展和实践分享Ozone介绍 • Apache Ozone适⽤场景 • Apache Ozone的最近进展 • Apache Ozone的实践分享 ⼤数据存储的需求 能否提供⾼并发读取和写⼊ 是否兼容主流API,如HDFS/S3 是否可以扩展⾄数百PB的存储容量,数千个 物理节点以及数⼗亿个对象 扩展性 API 兼容性 性能 是否⽀持存算分离架构同时也可以兼容存算耦合 架构 应⽤对接 安全 加密 HDFS现有的⼀些解决⽅案 Namenode Federation Router Based Federation 是否需要⼀个新的⼤数据存储? 现有的对象存储⽅案 ⽆法很好的横向扩展 HDFS的扩展性 达到了上限 ⽆法接受私有化 的数据存储系统 公有云的对象存储服务 ⽆法在线下部署 ⽬录 • Apache Hadoop HDFS⾯临的问题 • Apache Ozone介绍 • Apache Apache Ozone的实践分享 Apache Ozone • Ozone是 ⼀个分布式的KV对象存储 可扩展⾄数⼗亿个对象,从⽽对云原⽣类的应⽤更友好 强⼀致性 与HDFS 和 S3 API兼容 可在存储密集型设备中部署进⽽极⼤的减少设备开⽀ Apache Ozone – 数据存储的路径设计 Ozone的存储路径为 volumes, buckets, 和 keys. Volumes 类似与⽤户账号0 码力 | 35 页 | 2.57 MB | 1 年前3
 消息中间件RocketMQ原理解析 - 斩秋.......................................................................................... 7 2.3 分布式事物消息 .............................................................................................. ......................................................................................... 11 2.2 分布式事物消息落地 ............................................................................................ .......................................................................................... 29 二:消息存储 ..................................................................................................0 码力 | 57 页 | 2.39 MB | 1 年前3
 Kubernetes Operator 实践 - MySQL容器化MySQL Operator 设计实践 4. 小结 无状态服务 服务调度 有状态服务集群 服务调度 状态保存 集群管理 有状态服务 服务调度 状态保存 带来的新挑战 服务调度 状态存储 集群管理 成员管理 扩缩容 故障迁移 高可用 CoreOS 提出了 operator Deployment StatefulSet PV/PVC StorageClass ?? of complex stateful applications on behalf of a Kubernetes user. operator 是特殊的 controller,用来管理复杂的分布式应用 ü custom resource definition(CRD) ü custom controller Operator 是什么 • Kubernetes 中一切都可视为资源 • WorkQueue:事件合并、过滤、延时、限速 Operator CRD 里有什么 MySQL CRD • Spec:配置 & 期望状态 • Status:当前状态 MySQL 配置 • 版本 • 端口 • 存储信息 • 配置文件 集群配置 • 副本数 • 高可用模式 K8s 调度信息 • 资源套餐 • 亲和性信息 • NodeSelector 使用 CRD 2. client-go 配套工具0 码力 | 42 页 | 4.77 MB | 1 年前3
 GPU Resource Management On JDOS常规的容器服务 ,使用 gpu 的 zone , 自行设定相应的镜像即 可,有完善的周边服务 训练服务 • 提供基于 kubeflow 的分布式训练方案 – 界面化操作,用户提供代码地址和执行命令即可 – 系统内建支持安装 pip 依赖 – 自制存储插件支持分布式文件系统存储用户数据 – 支持官方镜像,不需要 JDOS 提前协助制作镜像 – 提供 tensorboard 作为训练监控实时查看训练状态 限制 + 优先级) • 创建训练 – 用户选择集群提供代码地址和执行命令即可 – 选择所用框架(镜像):支持官方,亦可自制 (提供 dockerfile 生成镜像服务) – 选择存储来源:对接了内部的存储 – 填写代码地址,执行的命令等 – 可以选择是否监控训练,提供 tensorboard 任务列表 可以指定 git 的 commit-id 发起任务 任务详情 可以查看具体的容器列表,以及查看容器的日志和事件0 码力 | 11 页 | 13.40 MB | 1 年前3
 基于go和flutter的实时通信/视频直播解决方案 段维伟纯Go语言的WebRTC 全家桶 作者: Sean DuBois ION 离子之光 分布式实时通讯系统 https://github.com/pion/ion • 基于pion/webrtc 开发 pion/ion-sfu • 分布式架构 • 基于grpc over NATS mq • 使用redis 存储媒体流全局位置 • 支持业务自定义开发 • 高性能,单个ion-sfu节点 1k 1k 并发仅需 0.5核 ION 架构 多node 架构 主要模块 • ISLB 服务发现,负载均衡,媒体信息全局存储 • Biz 业务接入模块 • SFU 节点 (用于转发webrtc 流,与biz模块配合创建视频会议系 统) • AVP 节点 (用于从SFU节点拉取数据进行数据处理,视频流存 储,音视频混合,CV ,语音识别,图形识别等) • 网关节点与go-sip stack 或0 码力 | 38 页 | 2.22 MB | 1 年前3
 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单内存和计算开销,在推理中降低了 KV缓存占用空间。 多头潜在注意力(MLA)机制 通过序列化预测未来多个令牌,增强 模型的上下文建模能力,并支持推测 解码加速推理。MTP在特定场景下同 时预测多个令牌,提高信号密度,减 少上下文漂移和逻辑连贯性问题。 多令牌预测(MTP) 采用FP8混合精度训练,通过在训练 过程中使用更适宜的数据精度,减少 了计算量和存储需求。FP8混合精度 训练在保证训练准确性的基础上,显 DeepSeek 在端侧部署中展现出较强的适应性和灵活性。 模型轻量化 DeepSeek通过蒸馏技术优化小模 型(1.5B/7B/8B/14B/32B/70B 参数规模),使其在本地部署中表 现出色,适合存储和计算资源有限 的端侧设备。 实时性 在端侧设备上,DeepSeek 能够满足实时性要求,例如 在智能家居、自动驾驶等场 景中,推理延迟低至毫秒级。 硬件兼容性 支持英特尔、英伟达等主流硬 企业财务报表 → 财务分析、资 产负债表、利润表等。 行业政策文件 → 政策法规、行 业趋势、监管规定等。 专家报告 → 宏观经济预测、市 场前景分析、行业趋势报告等。 按照行业或主题对数据进 行分类存储,例如:  快速响应能力: 在各种行业需求瞬息万变的情况下, “AI参谋”能够提供即时的数据分 析和决策支持,帮助客户迅速定位 问题并制定解决方案。  自动化处理: 系统通过算法自动识别异常数据、0 码力 | 85 页 | 8.31 MB | 8 月前3
 Apache Pulsar,云原生时代的消息平台 - 翟佳
持久化 - 跨地域复制 • 解除存储计算耦合 • 运维痛点:替换机器、服务扩容、数据 rebalance • 减少⽂件系统依赖 • 性能难保障: 持久化(fsync)、⼀致性(ack: all)、多Topic • IO不隔离:消费者读Backlog的时候会影响其他⽣产者和消费者 streamnative.io Apache Pulsar 特性 • 云原⽣架构: • 存储计算分离 • 分层 + 分⽚ 的⽣态和社区 • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar 的云原⽣架构 • 企业级流存储: BookKeeper streamnative.io Pulsar: 云原⽣的架构 —— 分层 + 分⽚ • 存储和计算分离 • 节点对等 • 独⽴扩展 • 灵活扩容 • 快速容错 streamnative.io Broker 容错 ⽆感知容错 ⽆感知容错 零数据catchup streamnative.io Bookie容错 应⽤⽆感知 并发可控 数据恢复 streamnative.io 瞬时存储扩容 应⽤⽆感知 数据均匀分布 ⽆re-balance Pulsar: 云原⽣的架构优势 https://jack-vanlightly.com/sketches/2018/10/2/kafka-vs-pulsar-rebalancing-sketch0 码力 | 39 页 | 12.71 MB | 6 月前0.03
 Ubuntu 桌面培训 2010绝大部分附加软件不会带来 额外费用 • 标准化的操作系统,个性化 选项有限 • 需要为附加的应用程序付费 数据存放 • 方便升级和降级 • 用户数据存储在用户主目录 里 • 方便迁移、复制用户数据和 迁移到另一台计算机上 • 用户数据被分散存储在多个 地方 • 备份和迁移数据较困难 表 I.1 关 键 因 素 14 Ubuntu 和 Microsoft Windows:对比 目录 Lucid 是标准化的操作系统,自定义选项有限。尽管也有数量众多应 用程序,但是绝大部分是专有软件,会带来额外的花费。 图 I.7 桌 面 自 定 义 数据存储 Microsoft Windows 中,用户数据通常被分散存储在多个地方,备份和 迁移数据到另一台计算机上比较困难。Ubuntu 把所有的用户信息都存储在一个地 方——用户主目录,可以很方便的从一台旧的电脑迁移到新电脑上,或者把数据备份 到其他地方。 16 Ubuntu 和 Ubuntu 桌面 29 Ubuntu 桌面培训 目录 图 II.5 “ 位 置 ” 菜 单 注释: 默认情况下,系统将自动为每个用户创建以用户名命名的主目录,里面存储了该用 户所有的配置文件。在一个多用户系统中,每个用户都应把他的个人数据存储在他 30 Ubuntu 桌面组件 目录 Lucid Lynx 的主目录中。 • 系统此菜单供修改计算机设置和访问 Ubuntu 帮助系统。 图 II0 码力 | 540 页 | 26.26 MB | 1 年前3
 基于 KUBERNETES 的 容器器 + AI 平台Kubeflow 社区的联合创始⼈人 • kubeflow/tf-operator • 定义 TFJob Spec (CRD) • 跟踪 TensorFlow 任务运⾏行行状态 • ⽀支持分布式 TensorFlow 任务 KUBEFLOW 之上 • 借⼒力力容器器平台提供⽣生产级的集群资源管理理 • ⼯工作区隔离与共享 • 数据、模型、环境、应⽤用等 • 全⾯面⽀支持 AI0 码力 | 19 页 | 3.55 MB | 1 年前3
共 16 条
- 1
 - 2
 













