Apache Pulsar,云原生时代的消息平台 - 翟佳Apache Pulsar 云原⽣时代的消息平台 翟佳 streamnative.io ⾃我介绍 • 开源项⽬爱好者: • Apache Pulsar PMC成员 • Apache BookKeeper PMC成员 • EMC -> StreamNative • 华中科⼤ -> 中科院计算所 • Pulsar 的根本不同 • Apache Pulsar 简介 • Pulsar Pulsar 是什么 streamnative.io Apache Pulsar 要解决的问题 • 企业需求和数据规模 • 多租户 - 百万Topics - 低延时 - 持久化 - 跨地域复制 • 解除存储计算耦合 • 运维痛点:替换机器、服务扩容、数据 rebalance • 减少⽂件系统依赖 • 性能难保障: 持久化(fsync)、⼀致性(ack: all)、多Topic • IO不隔离:消费者 IO不隔离:消费者读Backlog的时候会影响其他⽣产者和消费者 streamnative.io Apache Pulsar 特性 • 云原⽣架构: • 存储计算分离 • 分层 + 分⽚ • ⾼性能 + 强⼀致性 • ⽀持统⼀的 Queue 和 Stream 的接⼝。 • 丰富的企业级特性 • 多租户隔离 — 百万Topics — 跨地域复制 — 鉴权认证 • Pulsar 的根本不同 • Apache0 码力 | 39 页 | 12.71 MB | 6 月前0.03
 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 于客户细分、信用评分、社交媒体营销、股价预测等。 将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化,0 码力 | 85 页 | 8.31 MB | 8 月前3
 Ubuntu 桌面培训 2010OpenOffice.org 演示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 IV.I.IV OpenOffice.org 数据库 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 目录 5 Ubuntu 桌面培训 目录 IV.I.V OpenOffice . . . . . . . . . . . . . . . . . . . . . . . . . . 245 V.III.II 在 Ubuntu 中玩 Microsoft Windows 操作系统上的 游戏 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 IX.II 系统文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 540 页 | 26.26 MB | 1 年前3
 清华大学 DeepSeek 从入门到精通+ 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务0 码力 | 103 页 | 5.40 MB | 8 月前3
 RocketMQ v3.2.4 开发指南.. 13 6.2 文件系统 .......................................................................................................................................................... 14 6.3 数据存储结构 .......... ........................................................................................ 15 6.5 数据可靠性 ............................................................................................... ............................................................................... 34 11.3 Message 数据结构 ................................................................................................0 码力 | 52 页 | 1.61 MB | 1 年前3
 基于go和flutter的实时通信/视频直播解决方案 段维伟基于go和flutter的实时通信/视频直播解决方案 段维伟 湖北捷智云技术有限公司 创始人 目 录 背景 01 技术简介 02 客户端 03 服务端 04 开源社区 05 Q&A 06 背景 第一部分 即将讲述的内容 • WebRTC 实时通讯 • Flutter 跨平台UI 开发框架 • 基于Flutter UI 框架的WebRTC 插件 flutter-webrtc 可以做什么 02. 副标题 • 用实现网页音/视频通话 • 低延迟直播系统(在线课堂) • 多人视频会议系统 • 高质量SIP/VOIP系统 • 视频监控系统 • 机器学习,视觉计算等 如何使用它 01. 副标题 • 在Web中使用JS API • 基于google libwebrtc实现原生客户端开发 (ios/android/c++) • 使用第三方堆栈实现兼容功能(Go) 或通过google 官方提供的源码编 译出原生sdk • iOS/macOS 使用WebRTC.framework + Obj-C/Swift • Android 使用libwebrtc.aar + java • Windows 使用libwebrtc.dll + C++ 实际开发中会遇到的困难 • 下载和编译Google WebRTC框架(防火墙,编译环境) • 原生SDK开发(每平台人力投入)0 码力 | 38 页 | 2.22 MB | 1 年前3
 消息中间件RocketMQ原理解析 - 斩秋加一来实现对所有 queue 的轮询 如果入参 lastBrokerName 不为空,代表上次选择的 queue 发送失败,这次选 择应该避开同一个 queue 3) Producer 发消息系统重试: 发送失败后,重试几次 retryTimesWhenSendFailed = 2 发送消息超时 sendMsgTimeout = 3000 Producer 通过 selectOneMessageQueue et, storeTimestamp。 2.2.3 事物状态表 事物状态表是有 MapedFileQueue 将多个文件组成一个连续的队列,它的存储单元是定 长为 24 个字节的数据, tranStateTableOffset 可以认为是事物状态消息的个数,索引偏移量, 它的值是 tranStateTable.getMaxOffset() / TSStoreUnitSize 已经提供了很全面的实现, consumer 通过长轮询拉取消息后回调 MessageListener 接口实现完成消费, 应用系统只要 MessageListener 完成业务逻辑即可 2. Pull 方式:完全由业务系统去控制,定时拉取消息,指定队列消费等等, 当然这里需要 业务系统去根据自己的业务需求去实现 下面介绍默认以 push 方式为主, 因为绝大多数是由 push 消费方式来使用0 码力 | 57 页 | 2.39 MB | 1 年前3
 2022 Apache Ozone 的最近进展和实践分享Hadoop HDFS⾯临的问题 • Apache Ozone介绍 • Apache Ozone适⽤场景 • Apache Ozone的最近进展 • Apache Ozone的实践分享 ⼤数据存储的需求 能否提供⾼并发读取和写⼊ 是否兼容主流API,如HDFS/S3 是否可以扩展⾄数百PB的存储容量,数千个 物理节点以及数⼗亿个对象 扩展性 API 兼容性 性能 是否⽀持存算分离架构同时也可以兼容存算耦合 HDFS现有的⼀些解决⽅案 Namenode Federation Router Based Federation 是否需要⼀个新的⼤数据存储? 现有的对象存储⽅案 ⽆法很好的横向扩展 HDFS的扩展性 达到了上限 ⽆法接受私有化 的数据存储系统 公有云的对象存储服务 ⽆法在线下部署 ⽬录 • Apache Hadoop HDFS⾯临的问题 • Apache Ozone介绍 • Ozone的实践分享 Apache Ozone • Ozone是 ⼀个分布式的KV对象存储 可扩展⾄数⼗亿个对象,从⽽对云原⽣类的应⽤更友好 强⼀致性 与HDFS 和 S3 API兼容 可在存储密集型设备中部署进⽽极⼤的减少设备开⽀ Apache Ozone – 数据存储的路径设计 Ozone的存储路径为 volumes, buckets, 和 keys. Volumes 类似与⽤户账号0 码力 | 35 页 | 2.57 MB | 1 年前3
 Kubernetes Operator 实践 - MySQL容器化MySQL 容器化 刘林 搜狗资深工程师 关于我 搜狗商业平台研发部 资深开发工程师 l 主要从事商业平台研发工作,在构建高性能、高可用大规模 系统方面有丰富的实践经验 l 目前专注于云计算、DevOps 等相关领域,负责搜狗商业云 平台的设计研发工作 刘林 1. 背景介绍 2. Operator 的基本原理 3. MySQL Operator 设计实践 4. 小结 搜狗商业平台 信息流广告 搜索广告 品牌广告 代理商 广告主 技术体系 CRM 广告平台 物料展现 审核平台 大数据平台 基础架构 Golang C++ JavaScript Java Python 质量要求高 业务响应快 故障恢复快 Cluster1 搜狗商业平台业务系统 搜索推广 信息流 品牌 BizNginx (Load Balancer) Kafka Zookeeper 服务发现 灰度发布 监控中心 日志系统 PaaS SaaS 编 译 发 布 授 权 监 控 IaaS Registry SOA服务框架 DevOps 测 试 账户 搜狗商业平台基础平台 物料 计费 管理界面 项目 管理 CI&&CD 统一配 置中心 Cluster2 Node Node Node Node 商业云平台 BizCloud • 弹性伸缩能力不足0 码力 | 42 页 | 4.77 MB | 1 年前3
 基于 KUBERNETES 的 容器器 + AI 平台多集群和镜像仓库 多租户和旧系统的集成 运⾏行行和构建应⽤用 Rudder - 应⽤用编排技术框架 Cyclone - 持续集成与交付引擎 运⾏行行 AI 应⽤用(机器器学习) - 58s 视频演示 Kubeflow 的应⽤用 Kubeflow 之上 构建集群与管理理资源 多集群和镜像仓库 • 企业想要的 • 隔离性和安全性 • 容错性与混合云 • 功能多样性与上线流程 ⽣生产级镜像仓库解决⽅方案,基于 • ⼀一键⾼高可⽤用部署和维护 • 为多租户和复杂权限集成⽽而增强 『token service』 • 管理理基于规则的镜像仓库 • 其他企业需要的优化功能 企业典型的多租户模型 租户 Tenant User User group Namespace Deployment Registry project CI/CD workspace Pod … 典型 CI/CD 流程 CAICLOUD/CYCLONE • 开源 • https://github.com/caicloud/cyclone Cyclone 技术架构 云原⽣生 CI/CD 引擎 设计 - 云原⽣生,k8s 亲和性 性能 - 为企业场景优化 扩展性 - ⽀支持 AI ⼯工作流 运⾏行行 AI 应⽤用 KUBEFLOW 的应⽤用 • Kubeflow 社区的联合创始⼈人0 码力 | 19 页 | 3.55 MB | 1 年前3
共 18 条
- 1
 - 2
 













